Gapfruit OS for the Internet of Things

Sid Hussmann
CTO & Co-Founder
Gapfruit

March 24, 2023

Abstract

Gapfruit OS is a microkernel operating system with capability-based security developed
using the Genode Framework [2]. The capability-based architecture of Gapfruit allows gov-
erning the trust relationship of each subsystem down to the hardware root of trust. This
"capabilities all the way down" approach provides rational arguments as to why the system
is trustworthy. Gapfruit OS is in production use in financial services as part of a TEE and in
manufacturing as a secure IoT gateway.

This paper describes the benefits of Gapfruit OS for highly secure, mass deployment of
IoT devices. IoT is a field where the domains OT (Operational Technology), IT (Informa-
tion Technology), and Telco (Telecommunications) come together. We explain the individual
challenges of these fields and propose a solution.

We then bring seven properties of highly secured devices into the context of hardware,
operating system, and the cloud. Section [d] explains how Gapfruit OS holistically leverages
these seven properties.

Further, we will show why critical infrastructures still have ancient and vulnerable operat-
ing systems deployed and how Gapfruit OS mitigates this problem.

Section [6] shows how IoT solution providers build large-scale deployments of their service
and shorten the time-to-value of their solution.

The appendix contains a threat analysis of a deployment containing Gapfruit OS as part
of a secure door system for banks.

(©2023 gapfruit AG. All rights reserved.

Contents

|1 The Internet of Things| 3
[L1.1 IoT: Converging Domains| e 3
|I1.2 Difference in Security Priorities | o0 0oL, 4
[1.3 Challenges of Scaling IoT| 4
1. ety vs Security|. Lo 5

2 The Problem with Current Operating Systems| 5

[Properties of Highly Secured Devices| 6

4 Gapfruit OS Technology Overview| 7
4.1 Core Principles|. o o o 7

[4.1.1 Strong Isolation|. L o 7
[4.1.2 Control Over all Dependencies| 8
4.2 Comparison of Attack Surface|.o 000 9
A3 Resilience and Availability] 10

[Usecase: ToT Gateway] 10
BEI Benefltsl o 11

6 Tooling 12
[6.1 Define the Scope| e 12
[6.:2 Architect and Design|. 12

[6.2.1 Adapt an Existing Scenario|. o Lo 12
6.3 Develop and Test| 12
6.4 Publish and Upload | o . o o o 12
6.0 Manage and Extend| o 13

7 Threat Models! 14
(1 Attack Treesl e 14
.2 STRIDE Model | o o 16

1 The Internet of Things

We consider IoT devices as interconnected products that are not directly operated by end-users.
In contrast to end-user devices such as personal computers, laptops, and smartphones, IoT devices
are often in use for decades. Additionally, TIoT devices are being trusted for safety, security, and
privacy. The need for such products is rapidly rising in sectors such as energy, industrial, health,
transportation, logistics, retail, building, agriculture, security, and public safety [4].

Many IoT solutions are used to automate critical systems where the utilization of the machine
directly affects productivity, safety, and the supply chain of goods and bring enormous financial
opportunities.

1.1 ToT: Converging Domains

IoT lies in the middle of OT (Operational Technology), IT (Information Technology), and Telco
(Telecommunications) systems. OT, IT, and Telco systems all involve similar technologies to man-
age and control various aspects of business and industry. However, each domain has its strengths
and weaknesses.

OT systems monitor and control physical processes in industries such as energy, water, in-
dustrial automation, and transportation. These systems often use sensors, actuators, and control
systems to collect data, monitor, automate, and control processes.

IT systems store, retrieve, transmit, and manipulate data in the context of business and orga-
nizations.

Telco systems interconnect millions of devices and maintain communication between these
connections.

Telco

Figure 1: Converging domains

The main difference between IT and OT is that IT is primarily concerned with managing
and processing information - while OT focuses on operating and controlling physical devices and
processes. While IT and OT systems may use similar technologies, they are typically designed and
used for different purposes and environments.

IT engineering practices evolved in a way to meet the constant-changing business needs. The
established agile development practices made the technological leaps we see every day possible.
These practices resulted in a “ship fast - fix later” mentality that sometimes is at odds with the OT
systems that need to run uninterrupted for decades. In the past 15 years, IT has made massive
progress in developing tools to write, build and ship software as rapidly as possible. Further, Docker
innovated this field to de-couple software components so that these containers can be written by
different teams and deployed to any Linux server in the cloud. These micro-services communicate
with each other over clearly defined APIs. The rise of WebAssembly/WASTI is taking this concept
to the next level by making executables platform-independent and very lightweight.

Telco systems excel at managing and interconnecting millions of devices and are designed to
guarantee the availability and integrity of communication. To ensure these requirements, Telco

systems have their strengths in configuration management, monitoring, and the provisioning and
discovery of devices.

1.2 Difference in Security Priorities

Regarding security, the focus of these domains is also quite different.

The security goals of IT systems generally focus on protecting the confidentiality, integrity, and
availability (CIA) of data at rest, in transit, and in use.

In contrast, the security goals of OT systems typically focus on ensuring the safety, integrity,
reliability, and availability of physical processes and devices. This includes protecting against
unauthorized access or tampering with physical systems, protecting against system failures or dis-
ruptions, and ensuring that processes and devices are functioning as intended. These requirements
can make OT systems more challenging to secure, as delays or disruptions could have serious con-
sequences. Further, updates in OT systems are only allowed in constrained time windows. Any
downtime massively impacts productivity, cost, and the overall supply chain. Another difference
is that OT systems are often deployed in more challenging or hazardous environments, such as
industrial manufacturing, oil rigs, or power plants. Integrity is an often underestimated priority,
as a change in a configuration, e.g., a composition of materials for the automobile industry, could
lead to expensive recall campaigns of already sold cars.

Telco companies are responsible for protecting their network and customers’ data and complying
with many standards and regulations such as GDPR or PCI DSS. On a network management level,
they have security principles such as role-based access control [3] in use.

1.3 Challenges of Scaling IoT

This section summarizes the challenges to massively scale IoT projects described in the Beecham
report "Getting to Mass IoT Deployment: Challenges and Opportunities" [4].

IoT projects are now mainstream in that they exist in all market sectors and have been shown
to bring benefits. Therefore, the time has come to expand these projects from proof of concept to
large-scale deployments. More sensors will be deployed at lower costs, providing more data across
a broader range of use cases; early results show this is not straightforward.

Once a deployment starts to scale, manually performing even the most basic operations, such
as onboarding, configuration, security patches, and maintenance, will be increasingly difficult.

Low data rate connectivity may take a very long time to upgrade a piece of firmware unless
it is organized for efficient upgrade. Thus, managing a large fleet of devices remotely is a whole
different ballgame than managing a few. An IoT solution designed for a small deployment may be
totally unable to scale to a large deployment.

The paper also addresses security concerns: "having good data security has never been more
important". Security in IoT and digital transformation solutions can’t be an afterthought and has
to be an integral part of any development. Unfortunately, many companies still rely on inadequate
legacy solutions. They cannot detect and respond to today’s advanced attack strategies. Moreover,
there is a cybersecurity skills shortage. Relying on manual threat analysis and detection, as
well as a security-as-you-go strategy, cannot keep pace with the advanced capabilities of today’s
cybercriminals. This calls for a zero-trust architecture in contrast to the legacy perimeter approach.
In a nutshell, zero trust is security by design on an infrastructure level.

Gartner says SASE (Secure Access Service Edge) will transform the "legacy perimeter" into "a
set of cloud-based, converged capabilities created when and where an enterprise needs them, and
edge computing is one of many drivers. The key difference (to other endpoint computing solutions)
will be the assumption that the edge computing location will have intermittent connectivity and
the risk of physical attacks on the system.

According to one of the experts, "The purpose of IT is literally to support IoT maintenance. It
needs to either be completely maintenance-free or near to it. What is very important is the update
mechanism is designed from the very beginning. And very importantly, it is using a powerful
network management platform."

1.4 Safety vs Security

The engineering principles required for products used in safety-critical scenarios are at odds with
best practices for security. In a nutshell, here are the goals between these two categories:

e Safety: The system must not harm the outside world.
e Security: The outside world must not be able to harm the system.

Industries such as aerospace, med-tech, automotive, or OT have rigorous certification procedures
for their products. Domain-specific certification agencies review the development process, the
design, the testing, etc., and sometimes even each line in the source code. Certifying a safety-
critical product can therefore become tremendously expensive. Any change to the product would
lead to a costly re-certification of the system. This fact incentivizes manufacturers never to change
running systems. E.g., many hospitals or industrial production factories still have life-preserving
devices running a specific version of Windows XP or even older.

Systems with a focus on security are handled differently. Some software components are complex
by nature. The more features a software product has, the larger is their complexity - and ultimately,
the larger the attack surface. Commercial software typically has 20 to 30 bugs for every 1000 lines
of code, according to Carnegie Mellon University’s CyLab [6]. If a bug or vulnerability is found,
that component needs an update. Very quick. Even with a secure operating system, such as
Gapfruit OS, where the impact of bugs is significantly reduced (see , it is essential to update
critical components rapidly.

We are returning to our example with the hospital’s medical device running Windows XP
above. The call for more digitalization in hospitals results in interconnecting these devices that
contain vulnerable software. Any script kiddie can hack these devices remotely, resulting in fatal
incidences. The same is true in other fields such as OT, where machines are built to be used for 15
to 30 years and, until recently, were not intended to be connected to external networks - especially
not the hostile internet [3].

2 The Problem with Current Operating Systems

Current operating systems were designed more than 70 years ago. At the time, there were differ-
ent requirements important than we have today. Systems needed to work, be stable and fit the
restrained computing resources that were common back then. They were not designed to face the
hostile interconnected world we live in today. After the design was set in stone, different genera-
tions tried to add some security concepts. However, the core concepts of these operating systems
are still used today. And among the most popular operating systems, the rough architecture is
very much the same:

They lack proper isolation mechanisms so that any subsystem has a global impact on the overall
system.

Here a rough overview of this legacy design: Figure [2| shows the hardware on the bottom. The
kernel is abstracting that hardware. On the top, applications use this abstraction via system calls.
What is wrong with this approach?

One major security issue with monolithic operating systems is that the entire system may be at
risk if a single process is compromised. For example, if an attacker can exploit a vulnerability in a
network stack, they can gain access to the entire system with potentially devastating consequences.
Linux, for instance, contains close to 40 Million lines of code, where each line is critical.

Software that runs on these operating systems can access a vast number of system calls provided
by the kernel. Applications use these syscalls to access system resources such as file systems,
networking sockets, devices, etc. While user applications run in a de-privileged mode, the attack
vector to other applications and to that monolithic kernel with over 300 syscalls is enormous.
Further, applications operate within one global namespace and typically share one common file
system, which results in having to trust all applications not to misbehave.

22
)

User Mode

User Applications

g/

=
4]

Application / Process

N

Privileged Mode

AppArmor
kexec,

Crypto API

Chroot

Filesyst
32M LOC (Linux) tesystem

USB Stack
Bluetooth
Driver

Driver Driver

-\

NFS

Open Sound System

Filesystem

eBPF
Driver

Memory Management

Driver

ic Kernel

VPN

Filesvsle@“{'

LXc

VPN

Firewalld

M

Driver

Scheduling

> 300 Syscalls

‘ Hardware 1

Figure 2: Attack surface of monolithic operating systems

3 Properties of Highly Secured Devices

Microsoft Research published an outstanding paper regarding what it takes to build highly secured
devices [7]. The researchers identified seven necessary properties, which we bring into the context
of HW, OS, and cloud. Figure [3|illustrates which parts of the computing stack are affected by a
particular property.

A hardware root of trust (RoT) is a hardware-based security feature that highly secured devices
use to establish a secure foundation for the trustworthiness of the device’s computing stack. This
trust anchor is typically a TPM [8], which is a discrete chip or part of the SoC. For a trusted boot,
all of the boot stages verify the next one. As the name states, this requires hardware. However,
the OS must also be capable of establishing the trust graph up to the applications.

Defense in depth is a mechanism that involves implementing multiple layers of security controls
to protect against threats. With this approach, an attacker will have a significantly harder time
breaching the system. If they breach one line of defense, the other lines can still provide protection.
Devices achieve effective in-depth defense with the right combination of hardware primitives, a
small trusted computing base (TCB), and compartmentalization.

A small trusted computing base (TCB) is a concept that refers to the subset of a system’s
components that enforce other security concepts. The goal of a small TCB is to minimize the
complexity of components and hardware primitives that must be trusted to ensure the system’s
integrity, confidentiality, and availability. A common misbelief is that this goal stops at the hard-
ware. For effective guarantees, e.g., for isolation, we must also consider the choice of hardware
primitives. E.g., the usage of virtual memory in combination with nested page tables is magnitudes
less complex and can therefore be verified for correctness. This simplicity contrasts with complex
offerings such as Intel TDX, which implements a whole virtual machine monitor in micro-code,
which some consider "hardware" - that hides the complexity from the average software developer

[9].

Compartmentalization is a mechanism to isolate different parts of a system from each other.
The last few years have proven that the trust relationship between these compartments is very
nuanced, and we cannot categorize them in ultimate trusted vs. untrusted. Hence, the need for
dynamic compartments. The isolation mechanism for these compartments needs to be designed
with a small TCB to be effective. Compartmentalization acknowledges that software is generally
flawed, which is proven by reality. It allows for the planning for the worst case. When a breakage
happens, the damage remains constrained.

Password-less authentication in the context of IoT boils down to using certificates to authen-
ticate a device to a cloud offering or other remote systems. We can achieve the highest level of
security when we anchor this property cryptographically with a hardware RoT that attests to the
trustworthiness of the entire device.

Error reporting states the need for each subsystem to report its state and any failures that
affect the system’s overall health. This error reporting needs to be accessible from the cloud that
manages the fleet of devices.

Renewable security is a concept that allows you to update the security measures of a device.
We can divide this into proactive updates and a technique that involves detection and recovery.

Proactive updates are necessary when, e.g., a vulnerability has been found in a crypto library such
as libssl. The confidentiality and integrity of data in transit of any component that uses this library
may be at risk. Thus, it is essential to update this library as fast as possible. In contrast, some
system faults, such as zero-day exploits, have been unknown for a long time. To protect from these
threats, we need isolation. And if this does not help, the system needs a way to detect and recover
from these vulnerabilities.

1 Device

HW os ! Cloud

[Hardware Root of Trust] :
I I

1 IDefense in Depth]
I I

{smal TcB |
I I

' [Dynamic Compartments] ‘

: | |

[Passwordless Authentication]

; [Error Reporting]
T [
[Renewable Security]

Figure 3: 7 Properties of Highly Secured Devices

It becomes apparent that contemporary operating systems [2| do not fit the properties required
to build highly secured devices.

4 Gapfruit OS Technology Overview

Gapfruit OS solves the seven properties of highly secured devices in a holistic approach. Gapfruit
OS is a microkernel operating system with capability-based security developed using the Genode
Framework [2]. The capability-based architecture of Gapfruit allows governing the trust relation-
ship of each subsystem down to the hardware root of trust. This "capabilities all the way down"
approach provides rational arguments as to why the system is trustworthy.

4.1 Core Principles

This section describes a short overview of the core principles of Gapfruit OS. More in-depth tech-
nical information can be found in [IJ.

There are two core principles of Gapfruit OS: Strong isolation and control over all software
stacks. Control over all software stacks means that each component’s dependency graph is concisely
defined and verified during build, deployment, and run time.

4.1.1 Strong Isolation

The building blocks in a Gapfruit system are called components. Each component on Gapfruit
OS has strong isolation guarantees to protect the application and data at runtime. Furthermore,
the isolation protects potentially malicious code from breaking out. An analogy would be the
objectives of enclaves combined with what virtual machines or sandboxes try to achieve (Figure
E[). So the isolation of components is guaranteed from the outside-in and inside-out. This duality
of isolation is essential, as it is sometimes unclear which stakeholder considers which component
of a system as trustworthy.

The microkernel guarantees the quality of the isolation, containing a minimal trusted computing
base of roughly 10k lines of code. With such a small TCB, there is a realistic chance that the kernel
is entirely free from vulnerabilities.

Each component only receives access to the resources and services it absolutely requires. Com-
ponents are grouped into a deployable subsystem called SLICE (Secure and Light Instance of

Contained Enclave). A nested configuration mechanism defines the SLICE topology, which forms
a mandatory access control system [10] for every possible resource.

, v v v Component
>1 < < >1
| Sandbox/ _|

> Enclave < N N X N VM

Figure 4: The isolation of a component in Gapfruit OS in contrast to enclaves and sandboxes

4.1.2 Control Over all Dependencies

Apart from the strong isolation, another core concept is how Gapfruit OS governs dependencies.
The first type of dependency is Resource Distribution. A child component depends on its parent.
Each dependee is designed as simple as possible so we can verify it for correctness. At the root of
this dependency tree lies the microkernel. A parent component provides its children with resources
and establishes service connections to other components.

These connections form the second type of dependency: Service Topology. Components and
SLICEs are connected via a service-oriented architecture. A service is a means of abstraction
that provides access to a resource or functionality. There are roughly two dozen service types in
Gapfruit OS, like file system, networking, GPU, USB, and real-time clock, to name a few. A client
depends on a server providing a service. The topology inherently governs the access control to
the different services. The underlying technique is called capability-based security. Note that even
though the server is more critical regarding availability to the client, confidentiality and integrity
are still guaranteed.

Resource Distribution Service Topology

I see? | I ee? |

[e | [oo [0 wes | [s

stage_2

?

platform |

R

stage_0 microkernel I microkernel |

saset | patom [! [atcomime |1 | marasemen |

Parent-Child Relationship Service Oriented Architecture

Figure 5: Resource distribution and service topology

The third type of dependency shown in Figure[f]controls the supply chain of Software Dependen-
cies where a SLICE depends on binaries, libraries, or other artifacts that are part of distributable
packages. This transactional package management system lets you define and verify the Software
Bill of Material (SBoM) for each SLICE during build, deployment, and run-time. The declarative
dependency definition solves the trade-off between deploying subsystems independently and effec-
tively sharing common libraries. The package management system makes updates as lightweight
as possible since only the delta is being deployed.

Software Dependencies

I slice_2 I I slice_3 I

I

pkg_2 |

I slice_1 I I slice_4. I

I

pkg_4 |

7

pkg_1 |

bin_a | lib_x | bin_b | lib_z |

Lightweight Package Management

bin_c |

Figure 6: Software dependencies

Figures [f] and [6] show these three types of dependencies in three views of the same system.
Having this level of control over all dependencies lets you define the components that can impact a
specific feature’s computation and data flow. E.g., the components highlighted in green are part of
the Trusted Computing Base (TCB) of that particular feature. No other component can interfere
with that specific TCB due to the isolation guarantees and the governance over the dependencies.
These are very powerful properties. This separation allows you to design a system where only the
components in green have to be, e.g., certified for safety-critical criteria. Any other components
- such as internet-facing network components - can be rapidly updated without re-certifying the
whole product.

This property solves the problem described in section [Safety vs Security] With Gapfruit OS,
you can now act quickly on a vulnerability in, e.g., libssl without expensive re-certification for
safety.

4.2 Comparison of Attack Surface

Section [2| describes how an exploit in the network stack on typical operating systems results in the
complete compromise of the whole system. Figure [7] shows the attack surface on the very same
network stack between Linux and Gapfruit OS.

Compared to other trusted computing approaches, such as ARM Trustzone [11], which divides
the world into two compartments (secure and non-secure world), Gapfruit OS offers truly dynamic
compartments. Any exploit of third-party code, such as device drivers or network stacks, is isolated
and only affects that particular component.

Compared with monolithic operating systems, such as Linux, Gapfruit OS reduces the attack
surface by more than 99%.

Linux Gapfruit OS
% User Applications :’

Q

/ \ slice_1

N
/\

) , ‘ﬁi\; 2, .
stage_2

AppAmor NFS xc
exes Open Sound System

Crypto API

Chroot
Filesystem

USB Stack

Driver

Driver Driver

Filesystem

VPN
VPN

eBPF Firewalld

()

N

Bluetooth

Driver
Filesyster "{'
N tack
Stack ‘

Memory Management

Driver
Monolithic Kernel

Scheduling

Driver

e

T

stage_1 |

platform |

?

?

stage_0 |

microkernel |

Figure 7: Reduction of attack surface by >99%

4.3 Resilience and Availability

The desired state of the SLICE topology is defined using a declarative configuration interface.
SLICEs can be started and stopped individually.

Gapfruit OS supports analyzing the health of each SLICE during run-time and, depending on
different criteria, restarting SLICEs when required. Even device drivers are designed so they can
be restarted while keeping the impact on the overall system to a bare minimum.

Via the system configuration, it is possible to pin a SLICE to one or more specific CPU cores.
Product developers can use this to prevent interruption of a critical SLICE so that its functionality
is deterministic and its availability is guaranteed - a necessity for hard real-time requirements.

Each SLICE is restricted by resource usage. The microkernel enforces this limit and stops
(and may restart) components that exceed the configured limit. This prevents the system from
becoming unstable due to, e.g., exceeding the memory consumption of individual SLICEs.

5 Usecase: IoT Gateway

The benefits of Gapfruit OS are relevant for many industries. This section describes a solution
to bring a zero-trust strategy to the industrial automation sector: An IoT Gateway that Gapfruit
provides in collaboration with hardware vendors and solution providers.

In the context of operational technology (OT), zero-trust refers to a security approach in which
all devices and users are treated as untrusted and must be continuously authenticated and au-
thorized before being granted access to resources. This approach mitigates the risk of insider
threats and reduces the attack surface of OT systems, which are critical to the operations of many
organizations.

However, implementing a zero-trust strategy in OT environments can be challenging for several
reasons:

e Computing power: Many sensors, actuators, or simple IoT devices lack the computing re-
sources for the cryptographic computations necessary for password-less authentication.

e Interoperability: Many OT systems need to work with specific protocols and a mix of mod-
ern and legacy technologies, making integrating them with a zero-trust security solution
challenging.

e Visibility: It can be difficult to obtain a complete and accurate view of the devices and users
within an OT environment, which is necessary for implementing a zero-trust approach.

e Maintenance: OT systems often have long life cycles and may not be regularly updated or
maintained, making it difficult to ensure that they are secure and compliant with zero-trust
best practices.

These challenges call for a hybrid approach of moving this “last perimeter” as close as possible to
devices incapable of many security mechanisms. The IoT Gateway protects this last perimeter.
The gateway shown in Figure [§forms a first line of defense that makes a zero-trust transformation
possible in OT.

10

1
1
! loT Gateway
1
1
1

1
1
1
MQTT \ Data Plane /:"m
B e T e i ~4— !

OPCUA et — | | ThingAdaptor | , DataAdaptor | , CloudAdaptor | /_'.(T
\ L | 0
[[(i f
! Application 11 Application 11! Application 1 1 /—
! 1! 1 > SAPIloT
1 Libs ' Libs o Libs ! g
1 ' 1l 1
! N " = Lg—| 1
Bacnet |l€e+— || ! Runtime 0 ¢ Runtime 3L Runtime | \:_.(T
|

o oL [e e - -
1
1
LoRaWan ! R \W
1

——————————— ! I SLICE Monitor | I Update Manager | I Mgmt Agent | ! Network
' Management
I Gapfruit OS | .
[cru [ram | [@ru [tem [wo][Frea |

Figure 8: IoT Gateway running Gapfruit OS

We can divide the IoT Gateway into two core functionalities: The management plane and the
data plane.

The data plane connects the OT world with the IT world. It is responsible for connecting
and pre-processing the payload from sensors, actuators, and other devices behind the gateway.
Gapfruit provides several building blocks for connecting sensors and actuators via field buses and
IP-based protocols. We also provide building blocks for cloud connectivity to various cloud vendors.
Gapfruit offers extensive tooling to combine and adapt these building blocks to create deployable
SLICEs.

The management plane is responsible for configuring and managing the gateway itself and
providing access to the it for monitoring and maintenance purposes. To manage truly scalable IoT
deployments, we collaborated with Axiros [I3], one of the leading Telco technology providers. We
offer management capabilities over the Telco standard TR369 [12], which is easy to integrate into
existing management solutions that can manage a fleet of millions of devices. TR369 is designed
to bring the scaling of Telco equipment to the internet of things. Note that this management agent
is interchangeable if other management protocols, such as NETCONF/RESTCONF, are needed.

5.1 Benefits

With the previously described concepts and properties, Gapfruit OS brings the following benefits
to IoT solution providers, product manufacturers, and OEMs:

e Zero-touch provisioning

e Zero downtime upgrades

e End-to-end product lifecycle management

e Flexible and straightforward tooling to deploy any application
e Platform agnostic

e Connectivity agnostic

e Lightweight upgrades, even with low data rates

e Designed to scale to massive IoT deployments

e Management access without vendor lock-in

e Shortening the time to value of IoT deployments

e Secure by design

11

6 Tooling

Gapfruit OS is a modern operating system with capability-based security to empower a diverse
hardware and software ecosystem. We embrace the variety of different domains, programming
languages, protocols, and legacy systems and strive to make the development tooling as simple as
possible.

This section briefly summarizes how IoT solution providers create deployable SLICEs and
manage a fleet of gateways running Gapfruit OS. For this, we take the example of an IoT Gateway
that one of our customers has in production environments. The workflow for other products,
however, is very similar.

6.1 Define the Scope

Here you define the high-level architecture. You start by answering the following questions:
e Which things do I want to connect? Over which protocol? Which interface?
e What type of data pre-processing do I need?

e Which cloud do I want to use?

6.2 Architect and Design

The answers to previous questions will give you a simplified overview of Figure Let’s assume
you want to connect MQTT devices via the IoT Gateway to Azure IoT Hub over LTE. Further,
let’s assume you want to act on particular messages in real time on the gateway without involving
the cloud latencies.

6.2.1 Adapt an Existing Scenario

Gapfruit provides blueprints of various scenarios which solution architects may use for adaptation.
The data plane of [B|shows three layers: The Thing Adaptor, Data Adaptor, and the Cloud Adaptor.
In this example, we chose a scenario that has the following features:

The Thing Adaptor comprises a Mosquitto broker [14] that communicates via MQTT messages
over Ethernet to the devices and to the Data Adaptor.

Choosing the suitable Data Adaptor is a bit more involving. Gapfruit offers a variety of runtimes
that integrate existing code into SLICEs such as Docker/WASM, JVM, and virtual machines and
build systems of various programming languages. E.g., using an existing C# application that is
built with Docker/ WASM.

The Cloud Adaptor connects the gateway to Azure IoT Hub via LTE using credentials backed
in a hardware root of trust.

6.3 Develop and Test

With the rough blueprint at hand, you can start developing or tweaking your application for the
pre-processing data. You can build and test your scenario either on your development machine or
on a physical device running Gapfruit OS.

The build system integrates external building blocks and glues the different components to-
gether.

6.4 Publish and Upload

This step involves creating deployable packages and cryptographically signing the build artifacts
so you can push them to any web server on the internet.

12

6.5 Manage and Extend

You can now push your SLICE package to your fleet of devices by creating a campaign on the
TR369 management controller, such as AXESS from Axiros [I3]. Here you can specify which
gateways should run your SLICE, what events you want to monitor etc.

Depending on the feedback, you may want to implement new features iteratively by going back

to step [6.3]

About Gapfruit AG

Gapfruit is a deep-tech company based in Switzerland with a proven track record in systems
security, product development, and software engineering. The founding team developed a military-
grade operating system fulfilling the requirements set by national governments and security agencies
across the world for ironclad security. With this expertise, Gapfruit brings scientifically recognized
academic research to real-world products for today’s and future challenges. The developers at
Gapfruit have been contributing to the Genode Framework [2] for over a decade.

If you want to deliver trustworthy products yet focus on your core expertise, contact us today.

https://gapfruit.com

Abbreviations

| Abbreviation | Meaning

API Application Programming Interface

App Application

CIA Confidentiality, Integrity and Availability
DRTM Dynamic Root of Trust Measurement
GDPR General Data Protection Regulation

IoT Internet of Things

IT Information Technology

JVM Java Virtual Machine

LOC Lines of Code

MAC Mandatory Access Control

NIC Network Interface Card

oT Operational Technology

PCI DSS Payment Card Industry Data Security Standard
PLC Programmable Logic Controller

ROM Read-only Memory

SBoM Software Bill of Materials

SE Secure Element

SLICE Secure and Light Instance of Contained Enclave
SoC System on Chip

SRTM Static Root of Trust Measurement
STRIDE A threat modeling technique

TCB Trusted Computing Base

TEE Trusted Execution Environment

Telco Telecommunication

TLS Transport Layer Security

TOC Time of Check

TOU Time of Use

TPM Trusted Platform Module

13

https://gapfruit.com

Appendix
7 Threat Models

Even though we consider Gapfruit OS an operating system, in this threat model analysis, we refer
to it as firmware. Further, from this analysis, there are the following assets: The IoT Gateway,
the cloud, the sensor(s), and the actuator(s).

7.1 Attack Trees

This section describes how an adversary would attack a door system. Figure [9] shows how they
would try to open the door.

Malicious act with
liegitimate device

Send request for

Tamper with the app

malicious act

A 4 l Y

Tamper with device/ Load malicious app Send.mallcmus Manipulated
firmware state input request
. . . Priviledge TLS
Firmware protection Software signature escalation protection
ELegend: ' Strong isolation & Steal TLS

control over TCB credentials

Ei

: Mitigation

Secure-Element

Figure 9: Attack Tree Actuator

While being able to open the door is not desired, spoofing the state of the door can also be
disastrous. The analysis can be seen in Figure [I0]

14

Report false door
information

Mitigation Mo_dlfly Iegl_tlmate R_eport for_ged
information information
(l Impresonate device
{ Modify on device Modify on network}
¢ TLS authentication
(TLS integrity

firmware state the app

v v

Firmware protection Firmware protection

[ramperwith device/} { Tamper with } protection

Steal private key

Secure-Element

Figure 10: Attack Tree Sensor Information

Figures [0 and [I0] reference mitigations that involve the protection of the firmware, shown in

Figure

\Legend
E Attack . o
H Firmware protection
; Mitigation
' Tamper with device/
. firmware state
A
v v v
Attack CPU or RAM Rur) modified Run modified apps Remote exploit annled_ge
firmware escalation

v v v v v

Disk encryption & Strong isolation &

integrity protection Uz selivale control over TCB

Tamper protection Secure-Boot

Figure 11: Attack Tree Firmware

15

7.2 STRIDE Model

This section describes the threat model of IoT gateway built with Gapfruit IoT. The threat model
here is derived from the STRIDE model.

Table 1: Threat for Asset - IoT Gateway

] Threat \ Example

S1: The attacker may impersonate the cloud, device, or an app

S2: The attacker may spoof to or from another legitimate device or

Spoofing app
S3: The attacker may replace the legitimate device or app with a
forged one
S4: The attacker may send commands to the actuator as a spoofed
device
Tampering T1: The attacker may modify the firmware or apps of the device
T2: The attacker may modify a command sent to the device
Repudiation R1: The attacker may prevent logging

R2: The attacker may erase or truncate the log

I1: The attacker may steal the data collected on the device

Information disclosure 12: The attacker may intercept data transferred between sensors
and the device

13: The attacker may intercept data transferred between the device
and the cloud

D1: The attacker may overload the device or data connection

Denial of service D2: The attacker may disable the device

E1: The attacker may gain access to other apps on the device

Elevation of privilege

E2: The attacker may gain administrative privilege on the device

16

Table 2: Adversary for Asset - IoT Gateway

Adversary

‘ Example

Network attacker

N1: The attacker may eavesdrop, modify, or spoof packets on the
network.

N2: The attacker may connect to the device to exploit a
vulnerability in the firmware or an app

N3: The attacker may send an unauthorized request to the device

N4: The attacker may overload the data connection with
superfluous network traffic

Unprivileged software
attacker

Ul: The attacker may insert malicious code in an app to take
control of the device

U2: The attacker may send an authorized request or sensor input to
exploit a vulnerability in the firmware or an app

U3: The attacker may overload the device with a malicious app

Privileged software
attacker

P1: The attacker may modify settings or apps

P2: The attacker may steal credentials

Simple hardware
attacker

H1: The attacker may modify the firmware or data on the
nonvolatile storage

H2: The attacker may copy the data from the nonvolatile storage

H3: The attacker may turn off the device

H4: The attacker may eavesdrop or modify the communication to
the secure element

H5: The attacker may attach a debug probe

Skilled hardware
attacker

K1: The attacker reads or modifies the device’s RAM

K2: The attacker may perform side-channel attacks on the CPU or
secure element

Table 3: Mitigation for Asset - IoT Gateway

Mitigation

‘ Example

Protection

Communication with the cloud is encrypted and authenticated (S1,
S2, S3, 13, N1, N3)

Keys are stored and used in the secure-element (S1, S2, S3, P2, H1,
H2)

Nonvolatile storage is encrypted and integrity-protected (T1, I1, H1,
H2)

The device will only boot firmware signed by the manufacturer (T1,
H1)

System components are strongly isolated and governed (T1, R1, R2,
11, E1, E2, N2, U1, P1, P2)

The casing of the device is tamper-protected (H5)

Sensors, actors, and their communication to the IoT Gateway are
physically protected (S4, 13)

Detection

The heartbeat monitor will detect non-responsive software
components (D1, U3, N4)

The cloud will detect non-responsive devices (D1, D2, N4)

The casing of the device has tamper detection (K1, K2)

Recovery

The heartbeat monitor will restart non-responsive software
components (D1, U3, N4)

If the integrity check of the firmware fails, the device boots into
recovery mode and installs an authentic firmware (P1, H1)

17

References

[1] Sid Hussmann, Gapfruit OS, Technical Whitepaper
https://www.gapfruit.com/technology

[2] Genode Framework
https://www.genode.org

[3] Role-based Access Control
https://en.wikipedia.org/wiki/Role-based_access_control

[4] Getting to Mass IoT Deployment
https://mass-iot.com/wp-content/uploads/2022/11/BR_Getting-to-Mass-IoT-Deployment.
pdf

[5] Max Weidele, Whitepaper: Der grosse Industrial Security Guide (German)
https://www.sichere-industrie.de/ressourcen/

[6] Carnegie Mellon University’s CyLab Sustainable Computing Consortium
http://www.cylab.cmu.edu/

[7] Galen Hunt, George Letey, and Edmund B. Nightingale, The Seven Properties of Highly
Secured Devices
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/
Seven-Properties-of-Highly-Secured-Devices-2nd-Edition-R1.pdf

[8] Trusted Platform Module
https://trustedcomputinggroup.org/resource/tpm-library-specification/

[9] Julian Stecklina, The Flawed Design of Intel TDX
https://x86.10l/generic/2023/02/07/intel-tdx.html

[10] Mandatory Access Control
https://en.wikipedia.org/wiki/Mandatory_access_control

[11] ARM TrustZone

https://developer.arm.com/ip-products/security-ip/trustzone

[12] Broadband Forum, TR369: The User Services Platform
https://usp.technology/

[13] Axiros, Any Device. Any Protocol. Any Service. Any Time | We manage all THINGS.
https://www.axiros.com/

[14] Eclipse Mosquitto, An open source MQTT broker
https://mosquitto.org/

18

https://www.gapfruit.com/technology
https://www.genode.org
https://en.wikipedia.org/wiki/Role-based_access_control
https://mass-iot.com/wp-content/uploads/2022/11/BR_Getting-to-Mass-IoT-Deployment.pdf
https://mass-iot.com/wp-content/uploads/2022/11/BR_Getting-to-Mass-IoT-Deployment.pdf
https://www.sichere-industrie.de/ressourcen/
http://www.cylab.cmu.edu/
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Seven-Properties-of-Highly-Secured-Devices-2nd-Edition-R1.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/11/Seven-Properties-of-Highly-Secured-Devices-2nd-Edition-R1.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://x86.lol/generic/2023/02/07/intel-tdx.html
https://en.wikipedia.org/wiki/Mandatory_access_control
https://developer.arm.com/ip-products/security-ip/trustzone
https://usp.technology/
https://www.axiros.com/
https://mosquitto.org/

	The Internet of Things
	IoT: Converging Domains
	Difference in Security Priorities
	Challenges of Scaling IoT
	Safety vs Security

	The Problem with Current Operating Systems
	Properties of Highly Secured Devices
	Gapfruit OS Technology Overview
	Core Principles
	Strong Isolation
	Control Over all Dependencies

	Comparison of Attack Surface
	Resilience and Availability

	Usecase: IoT Gateway
	Benefits

	Tooling
	Define the Scope
	Architect and Design
	Adapt an Existing Scenario

	Develop and Test
	Publish and Upload
	Manage and Extend

	Threat Models
	Attack Trees
	STRIDE Model

