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Abstract

In a competitive environment where vendors have to bring products to
market quickly, engineers are often forced to design products that serve
an overly broad spectrum of customers. To satisfy their needs, they must
focus on their core expertise - often neglecting security. Integrating tech-
nologies and applications from many di�erent vendors into one product is
di�cult and time-consuming. Under ever-growing threats, this complex-
ity leads to increased security and safety problems and results in enormous
expenses for manufacturers, integrators, and customers. The antiquated
operating system concepts upon which today's IT is built are not appro-
priate for the 21st century.

Gapfruit Trustworthy Execution Platform (TEP) is a modern mi-
crokernel platform with capability-based security. Gapfruit TEP scales
from specialized embedded systems, over carrier-grade appliances to high-
performance cloud servers. The platform architecture gives complete con-
trol over all software stacks and allows to form rational arguments as to
why the platform is considered trustworthy. It eliminates typical attack
vectors and reduces the impact of software �aws signi�cantly. Gapfruit
TEP allows running mixed critical applications side by side while guar-
anteeing strong separation of concerns. Additionally, Gapfruit provides
several low-risk migration paths enabling any unmodi�ed application to
run in strongly isolated environments.

A particular use-case of Gapfruit TEP is being able to design custom
Trusted Execution Environments with attestation, described in section 5.
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1 Introduction

Today's operating systems are built in a way that the kernel, the most critical
part of the system, consists of millions of lines of code. In these cases, the
kernel forms the �rst abstraction of the hardware. Software that runs on these
operating systems can access a vast number of system calls provided by the
kernel. These system calls are used so that applications can access system
resources such as �le-systems, networking, devices, etc. Code, running in kernel
mode, has complete access to all of the hardware and can execute any instruction
the machine is capable of executing. Important but complex software like device
drivers and protocol stacks run in privileged mode. An exploit of a likely bug in
any of these components results in the complete takeover of the computer (see
Figure 1).

Instead of talking about secure computing, the term trusted computing is
preferred by the security research community. The heart of every trusted system
should be a minimal Trusted Code Base (TCB). It is undisputed to keep the
critical components in a system as simple as possible. The kernel is the most
trusted part of the operating system. Microkernels are used in areas where
vendors are held responsible for the correctness of their products and where
physical separation is not feasible. These systems are kept in service for decades
and an error may have disastrous consequences.

Many areas in IT and OT su�er from cyber threats such as data breaches,
DDoS, ransomware, etc.; threats, that would signi�cantly be reduced by strong
separation. So why are microkernels not applied in these other areas? For
one part, developing products with microkernels is extremely di�cult and the
systems are mostly static and hard to maintain. On the other hand, there used
to be a price on performance compared to monolithic kernels.

With Gapfruit Trustworthy Execution Platform (TEP) these concerns are
obsolete. Its groundbreaking SLICE architecture with capability-based security
enables one to design systems where functionality from di�erent sources come
together without sacri�cing availability, integrity, and con�dentiality - combined
with great performance.
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2 Context

Competitive markets put product manufacturers under great pressure to im-
plement their ideas and release new products as fast as possible. Functionality
is what counts. That's what customers are willing to pay for. Security is
something to be considered after implementing the main features - if thought
of at all. There are way too many aspects in software security that need to
be considered, to provide a secure solution. Thus, vendors trying to bring new
high-quality products to the market often either miss deadlines and budget goals
or deploy products with severe security vulnerabilities.

2.1 Complexity Hides Dependencies

In markets where vendors are held liable for the correctness of their products,
physical separation provides the highest assurance for the independence and pro-
tection of di�erent functionalities from each other. For example, aircraft contain
dozens of electronic control units (ECU) that can be individually evaluated and
certi�ed. However, factors such as cost, power, or weight considerations call for
the consolidation of multiple features into a single ECU. At this point, microker-
nels are applied to partition the hardware resources into isolated compartments.
As the isolation is only as strong as the correctness of the kernel, such kernels
must undergo a thorough evaluation. In the face of being liable, an oversight
during the evaluation phase may have disastrous consequences for the vendor
and people exposed to the system. Each line of code to be evaluated is an ex-
pense. Hence, microkernels are minimized to the lowest possible complexity �
up to only a few thousand lines of code [2].

On the other hand, kernels of today's general-purpose operating systems
such as Windows, Linux, *BSD or OSX have millions of lines of code (LOC).
Linux currently counts over 30M LOC and the Windows kernel is estimated
to consist of 65M LOC [1]. All of which evolved over decades and their initial
focus was on usability, performance, and portability. Di�erent security mecha-
nisms were considered after the architecture was set in stone. For instance, the
features of the kernel are con�gured via multiple types of con�guration �les,
which access is granted to speci�c users via access control lists (ACL) of the
�le-system. Additionally, each process can invoke over 300 system calls, which
provide access to features the kernel provides. Figure 1 illustrates the attack
surface on monolithic kernels.

The formula Risk = Likelihood∗Impact is often used [3] to argue about the
risk a system is posing when in use. It is a simpli�ed formula, which states that
risk is a product of likelihood and impact. In the case of monolithic kernels, the
likelihood of an error is high because of the vast complexity. The impact of an
error is also very high since every line of code that runs in the kernel is critical
and an exploit results in the complete takeover of the whole system. Thus, using
monolithic operating systems for critical infrastructure is risky. The perception
of what should be considered critical in an infrastructure is shifting towards a
common understanding that we need to trust the interconnected things around
us.
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Figure 1: Attack surface of monolithic operating systems

2.2 Product Development and Maintenance

Writing secure software is hard. Additionally, developing products on top of
monolithic operating systems, with their large attack surface, requires a constant
re-evaluation of security issues.

Products are often in use long after the vendor has ceased support. Espe-
cially in markets such as transportation, telecommunication, banking, indus-
trial/building automation, automotive, critical infrastructure, or the military,
devices are in use for decades. To ensure the quality of their products over
the whole product-life-cycle, manufacturers need to spend a fortune on main-
tenance, including products sold years ago. Due to the growing complexity,
security vulnerabilities are increasing exponentially. For manufacturers need to
track Common Vulnerabilities and Exposures (CVE) [4] of each library or 3rd
party software component and respond by updating their products for the whole
lifecycle of the product.

Again, because of the complexity of those systems, maintaining monolithic
kernel features is very time-consuming. As kernel-internal APIs and ABIs are
not stable, third-party or self-developed drivers may not work with future ver-
sions of the kernel. This results in not being able to bene�t from security patches
introduced in new kernels and leading to the divergence of code-bases. Also,
bug �xes often take a long time to get integrated [5, 6] or compete against per-
formance requirements [7]. Even with Long Time Support (LTS) kernels, many
CVEs remain un�xed [8].

Additionally, deploying upgrades often have unforeseen consequences to other
parts of the system. Thus, the whole product needs to be rigorously tested be-
fore a new system image is sent to the device. It is also very common that even
this upgrade mechanism fails, leaving the system in a non-operational state.

Maintaining products is therefore very expensive for manufacturers and in-
tegrators, resulting in unpatched and unmaintained products waiting to be ex-
ploited and putting the vendor's reputation at risk.

Containerization is a rami�cation of architectural limitations in commodity
operating systems, programming languages, and frameworks. The main objec-
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tive is that di�erent teams deploy their code independently, the impact of errors
is limited and new features are released rapidly. Such issues can be addressed
using container technologies like Docker [9]. However, these �light-weight vir-
tualization� techniques raise new security issues because they all use the same
kernel with weak separation. Containerization doesn't reduce the size of the
trusted code base which the container isolation and security safeguards built
upon.

Furthermore, containers are black boxes. If the system runs as expected,
it's easy to neglect which software and which speci�c version is deployed. A
container may look like it's performing perfectly from the operational point of
view even when it's running components that are contaminated by a critical
security �aw. This �aw has been �xed long ago upstream, but not in the local
image.

3 Vision

Even though Linux is open source, veri�cation of its correctness is far from
feasible due to its enormous complexity. So the true question rises:

How can we prove the trustworthiness of a product?

This is where Gapfruit Trustworthy Execution Platform comes in. Gapfruit
TEP is built with the core security principles, Isolation, Containment, and Sim-
plicity [11], from the ground up. The primary objective of its architecture is to
enable absolute control over all software stacks while delivering a platform for
securely separated building blocks in a robust and scalable way. Gapfruit pro-
vides a novel solution to design secure systems using modern operating system
concepts. Each component only has the smallest possible set of privi-

leges that are required to ful�ll its functionality. This greatly reduces the
trusted code base of any software feature. Resources such as RAM or CPU are
distributed in a recursive parent-child relationship, while access to services such
as networking or �le-systems is controlled by a client-server service topology
(Figure 2). Device drivers and protocol stacks are moved from the privileged
mode to userspace. So even an untrusted driver or network stack only has an
impact on the services it provides and the resources (their own) it received from
its parent.

Microkernel MicrokernelPrivileged Mode

User Mode

Figure 2: Control over the trusted code base in terms of resource distribution
(left) and service topology (right)
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To improve the situation regarding software updates on devices, Gapfruit
uses a sophisticated package management system supporting reliable and repro-
ducible upgrades (Chapter 4.5). The upgrade mechanism is not only used for
user applications but also system components such as device drivers, protocol
stacks, software libraries, and even the boot image. This enables rapid rollouts
of upgrades and new features.

Gapfruit combines the lessons learned from the following disruptive tech-
nologies:

� Trusted Execution Environments.

� Micro-Services.

� Software-De�ned Networking.

� Network Function Virtualization.

� Compartmentalization.

The solution is a rock-solid operating system that is inherently secure and
future-proof. Gapfruit TEP is therefore suited for many di�erent use-cases such
as edge computing, hardware security modules, secure endpoints, IoT gate-
ways, medical devices, banking infrastructure, transportation, automotive, or
industrial and building automation systems [10]. With Gapfruit TEP, device
manufacturers can focus on their core expertise and will leap ahead of their
competitors in the vital aspect of security. Thus, customer satisfaction and
trust are increased, whereas the Total Cost of Ownership (TCO) is signi�cantly
reduced.

Additionally, with Gapfruit TEP, device manufacturers can prove the trust-
worthiness of their product through attestation and by making audits and code
walkthroughs feasible.
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4 Core Concepts of Gapfruit TEP

Gapfruit introduces a new level of security to computer systems. The Trustwor-
thy Execution Platform is built with the Genode Framework [12] that supports
several microkernels and runs on x86-64, ARM32/64, and RISC-V chips. The
building blocks for Gapfruit TEP are called SLICEs. A SLICE is a Secure and
Light Instance of Contained Enclave which has strong isolation guarantees so
that application and data are protected at runtime. Furthermore, potentially
malicious code is contained from breaking out. An analogy would be the ob-
jective of enclaves combined with what virtual machines or sandboxes try to
achieve (Figure 3). So the isolation of SLICEs is guaranteed from outside-in as
well as from inside-out.

Enclave Sandbox / VM

SLICE

Figure 3: The isolation of a SLICE in contrast to enclaves and sandboxes

Each SLICE may provide and may consume services. SLICEs are connected
using a service-oriented communication mechanism (Figure 5). A SLICE may
consist of a single component, a group of components (Figure 11), or even a
virtual machine monitor (VMM) to host a complete multi-purpose operating
system such as Linux, Microsoft Windows, or *BSD (Figure 7).

Another core concept of Gapfruit TEP is how dependencies are handled.
There are three types of dependencies which are shown in Figures 4 and 5.

slice_4

Child

Parent

Resource Distribution

slice_runtime

Client

Server

Service Topology

slice_4

slice_3

Software Dependencies

slice_4

bin_c

Figure 4: Types of dependencies

The �rst type of dependency is Resource Distribution. A child component
depends on its parent. Parent components are critical to the system, thus they
have a very small code base, so they can easily be veri�ed for correctness. A par-
ent component is called init which can be con�gured to spawn child components
and provide them with resources such as RAM and CPU. init may also establish
service connections to other components. These connections form the second
type of dependency: Service Topology. Gapfruit TEP has a service-oriented
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architecture where a client depends on a server. Note that even though the
server is more critical in regards of availability to the client, con�dentiality and
integrity is still guaranteed. The third type of dependency controls the supply
chain of Software Dependencies. Where a SLICE depends on binaries, libraries,
or other artifacts that are part of distributable packages. Figure 5 shows these
three types of dependencies in three views of the same system.

stage_2
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stage_0

lib_xbin_a

tep

platform slice_runtime

slice_1

slice_2 slice_3

slice_4

platform

slice_1 slice_2 slice_3

slice_4

tep

slice_1

pkg_a

bin_b

slice_2 slice_3

pkg_b

slice_4

lib_z bin_c

Parent-Child Relationship Service Oriented Architecture Lightweight Package Management

Resource Distribution Service Topology Software Dependencies

Figure 5: Topologies of dependencies

A device running Gapfruit TEP is bootstrapped in three stages. Stage 0
is the static system, containing the microkernel, core, init, and the minimal
IO drivers to get the system started. Stage 1 brings the device drivers and
multiplexers that set the service interface for SLICEs to connect to. Figure
5 shows on the left the slice_runtime, the parent component of all SLICEs,
and which is responsible for resource distribution and service routing between
the SLICEs and the platform SLICE. Stage 0 and stage 1 are typically built
by board support package (BSP) developers enabling Gapfruit TEP to a given
hardware. Once the platform is enabled, SLICEs can be deployed to stage 2.
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Figure 6: Gapfruit TEP device drivers and service multiplexers

The platform SLICE in stage 1 abstracts the hardware and contains all
low-level drivers that are needed on that particular device. Device drivers en-
capsulate singleton resources and multiplexers isolate the communication to
di�erent components. Multiplexers are simple components with a very small
trusted code base so that they can easily be veri�ed for correctness.
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4.1 Recursive System Composition

Since every component only has access to the resources and services it really
needs, de�ning a �at con�guration for a full system with all processes is not
feasible. A SLICE encapsulates the con�guration of its internal components
and speci�es the services it requires. This way, SLICEs can be deployed to
every platform that provides the required services. Figures 6, 7, and 11 show
examples of such encapsulations.
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N
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Figure 7: Example SLICE and its internals

4.2 Trusted Computing

Gapfruit TEP builds on the following modern OS security concepts:

4.2.1 Security Model

Commodity operating systems have huge APIs all processes have access to.
All doors are open. There are some security features available for mitigation,
limiting access rights on �le-systems or more complicated tools that close certain
doors such as SELinux [13], AppArmor [14], or seccomp [15].

With the capability-based architecture of Gapfruit TEP on the other hand,
there are no doors. Just like with a blueprint for a building, paths are speci�cally
de�ned and opened for each component if it is required to ful�ll its functionality.
Unlike with a building, however, this blueprint is highly dynamic. It forms
a mandatory access control system that is inherently de�ned in the SLICE
topology. This technique limits the attack surface of a speci�c component to
the bare minimum.

For a component to communicate, it requires a capability. A capability is an
access control token created and managed by the microkernel. The creation of
capabilities is controlled by explicit policies that specify what component may
communicate with which other component(s) or use which resource(s).

4.2.2 Small Trusted Code Base

As software complexity correlates with the likelihood for bugs, having security-
sensitive functionality depending on high-complexity software is risky [2]. The
term Trusted Code Base (TCB) denotes the amount of code that cannot be
compromised to uphold the integrity and availability of an application.
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Gapfruit TEP limits the complexity of all of its critical components. These
components are small, open-source, and veri�able by design. This reduces the
certi�cation and especially the re-certi�cation costs for e.g. safety-critical prod-
ucts signi�cantly. Figure 5 shows how straight forward it is to identify the
critical components and their resulting TCB (green). Non-critical or even un-
trusted components can be deployed to the same platform without sacri�cing
e.g. the functional safety certi�cation of the critical part(s) of the system.

4.2.3 IPC Addressing

The principle of least privilege states that all code should have only the privi-
leges needed to provide the required functionality. For maximum performance
Gapfruit TEP processes communicate directly with each other. However, this
communication channel has to be established by a mutually trusted parent com-
ponent. The parent is made speci�cally to enforce policies. A component is
otherwise completely isolated from the rest of the system. Instead of perform-
ing access control based on a client identi�cation in the server (like it's done in
e.g. QNX [16]), access control for IPC is solely performed by the microkernel
on the invocation of capabilities.

By using nested page tables, the microkernel allows components to securely
share memory areas, that afterward can be re-used to exchange data e�ciently
without compromising con�dentiality.

4.2.4 Secure Virtualization

For running full-blown guest operating systems inside SLICEs, Gapfruit TEP
supports several existing virtual machine monitors (VMM) that contain large
code-bases [17, 18, 19]. However, it does not rely on its separation technique.
Every guest OS has its own VMM. When a virtual machine gets compromised,
due to a likely bug in the VMM and the malicious code can escape the virtual
machine, the rest of the system is protected by the strong separation of Gapfruit
TEP and the hardware virtualization features provided by the CPU.

4.2.5 Userland Drivers

In a typical operating system like Linux, Windows, or *BSD, the core networking
code, including network card drivers and protocol stacks, all run in kernel mode
with privileged rights. Any bug in a driver or a protocol stack that gets exploited
in an attack would result in a full system compromise [20].

Userland drivers mitigate many problems concerning kernel space drivers.
Generally, they are simpler and more �exible and can pro�t from all the tools
that are normally available for software development. Performance can be sig-
ni�cantly better when combined with disabled interrupt handling since there
are far fewer context switches. Thus, packets sent and received do not have to
be copied between user- and kernel space [21]. Examples of such drivers are
DPDK [22] or Snabb [23].

To minimize the attack surface, in Gapfruit TEP, device drivers run in user-
land and are separated by IOMMU protection.
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4.3 Low-Risk Migration Paths and Compatibility

Today, the security bene�ts of microkernels are solely used in niche markets.
There are countless software solutions in productive service. The learning curve
to migrate existing applications to a capability-based microkernel system such
as e.g. CAmkES [24] is extremely steep. There is no real migration path. This
is where Gapfruit comes in. Gapfruit TEP is based on a capability-based mi-
crokernel architecture that provides runtime environments to run all existing
software solutions: e.g. POSIX compliant C/C++ runtime, ADA/SPARK [25],
JVM [26], Python [27], various unikernels [28], Wasm [29], VirtualBox [17],
etc. For drivers, Gapfruit TEP features Linux and BSD device driver environ-
ments. Gapfruit provides support for several microkernels such as seL4 [30],
nova [31], or base-hw [12]. As an intermediate step for existing Linux-based ap-
pliances, Gapfruit TEP may also be used on top of the Linux kernel while having
capability-based security and the isolation mechanism enforced by seccomp [32].

4.4 Scalability and Flexibility

Network Function Virtualization (NFV) introduced a new level of scalability and
cost savings for telecom companies by running entire classes of network node
functions in virtual environments, that previously used to be speci�c hardware
appliances. These virtual building blocks may be connected or chained together
to create communication services. One of the many bene�ts of NFV is that these
virtual environments can be orchestrated to commercial o�-the-shelf products
or to the cloud.

To this scalability, Software De�ned Networking (SDN) adds the �exibility
of con�guring the network topology. SLICE topologies are de�ned in a desired
state management pattern and these con�gurations are pushed to the device on
the management plane [33, 34, 35].

Gapfruit takes this idea a step further. Not only is it possible to run these
NFV building blocks e�ciently on the platform, but it also does so in an un-
precedented secure way. Furthermore, Gapfruit TEP is not limited to running
virtual network functions. With its SLICE building blocks, functionalities such
as disk encryption, �le analysis, protocol gateways, etc. can easily be added to
the system.

4.5 Package Management and Deployment

Gapfruit applies the lessons learned from managing micro-services in cloud envi-
ronments. Its lightweight packet distribution system solves the trade-o� between
deploying subsystems independently and sharing common libraries in a secure
way. Once a SLICE package is built, it can be deployed everywhere.
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The package management system is inspired by the one of NixOS [36] and
has the following characteristics:

� Integrity protected: Each package is individually signed. Critical pack-
ages can have multiple signatures making Gapfruit TEP work well where
TUF/Uptane [37] is required.

� Transactional upgrades: During a package upgrade, the system remains
in a consistent state. If a SLICE launches at any point in time, it's either
the old or the new version. But not something in between.

� Independent deployment: Installing and upgrading packages will not break
other packages.

� Rollbacks: Upgrades don't overwrite the old packages. If a new SLICE
doesn't work, it's always possible to revert to the previous state. This
makes the rollout of upgrades substantially less jeopardous.

� Reproducibility: Gapfruit TEP downloads the dependencies in the exact
versions required by a SLICE.

� Lightweight: If a library is required by two separate packages and the
version matches, it is only downloaded once.

� Transparent: Auditing which packages are in use is trivial and can be done
during build, deployment, and run-time.

stage_2

slice name=alice pkg=A/v1

slice name=brian pkg=B/v1

slice name=chloe pkg=A/v2

pkg A/v1

pkg B/v1

pkg A/v2

Y.bin
hash=D782

Z.lib
hash=2BE4

X.bin
hash=B4C7

X.bin
hash=2314

Figure 8: Package dependencies

Gapfruit SLICE packages only store the dependency to archives needed for a
SLICE to run. If an archive does not exist, it is downloaded and the integrity is
veri�ed. Figure 8 shows how SLICEs map to packages and di�erent versions of
these running in parallel. In this example, three SLICEs depend on two packages
A and B of which A exists in version v1 and v2. Package A/v1 only depends
on binary X.bin. However, new features were added to package A (A/v2) which
resulted in a new version of X.bin and a dependency on Z.lib. Package B/v1
depends on Y.bin and the same Z.lib that is used by A/v2. Thus, the archive
which contains library Z.lib is only stored once on the �le-system.
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4.6 Availability and Resilience

Availability is similarly handled as in Kubernetes [38]. The desired state of the
SLICE topology is de�ned using a RESTful con�guration interface. SLICEs can
be started and stopped individually.

Gapfruit TEP supports analyzing the health of each SLICE during run-time
and depending on the criteria, restarting SLICEs when required. Figure 6 shows
that even device drivers are designed in a way that they can be restarted while
keeping the impact on the overall system to a bare minimum.

Via the system con�guration, it is possible to pin a SLICE to one or more
speci�c CPU cores. This can be used to prevent interruption of a critical SLICE
so that its functionality is deterministic and its availability is guaranteed.

Each SLICE can be restricted by memory usage. The kernel enforces this
limit and stops (and may restart) components that exceed the con�gured mem-
ory limit. This prevents the system from becoming unstable due to exceeding
memory consumption of individual SLICEs.

4.7 On-Chip Security Features

Gapfruit runs on x86-64, ARM32/64, and RISC-V chips and supports hardware-
provided security features such as Intel VT-d/VT-x, AMD-V, AMD IOMMU,
TPM 2.0, and ARM TrustZone.

5 Trusted Remote Execution with Attestation

Having complete control over the Trusted Code Base has many use-cases. One
of which is the Trusted Execution Environment (TEE) with attestation.

Trusted Execution Environments aim to protect the integrity and con�den-
tiality of computation over sensitive data and/or sensitive code during runtime.
TEEs are becoming a requirement across various industries and use-cases such
as banking, GDPR compliant machine learning, or blockchain applications such
as smart-contracts or signing cryptocurrency transactions.

Trusted Execution Environments should provide at least the following:

� Physically and logically secure the execution of the application code from
any interference (Isolation Property).

� Attest to a veri�er the runtime integrity of an application, including the
whole TCB.

� Creating an immutable record of the execution of the application code,
detailing input, output, time, and device state (Audit Property).

� Restrict access to start an execution to authorized entities (Authorization
Property).

This entails having a mechanism to securely load code, protect code from
alteration, and extend to protecting the processed data and its output. A TEE
on Gapfruit TEP can prove that a certain output was generated from a speci�c
input, executed at a speci�c time with speci�c code. So it works like a notary
that proves its trustworthiness through attestation.
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With Gapfruit, TEP device manufacturers, platform providers, and the en-
clave application developers can customize TEEs to their requirements and
threat models. Gapfruit TEP allows any application to run inside a TEE.

Additionally, Gapfruit provides an easy-to-use API [39], which eliminates
dealing with the complex handling of crypto serialization systems such as ASN.1,
PKCS#11, etc.

TEE Hardware

Gapfruit TEP

gRPC Request

TEE SLICE

App

Key Store

gRPC Response

Less-trusted Infrastructure

gRPC
Server

Figure 9: Remote trusted execution

Figure 9 shows a high-level use-case where a TEE client connects to a TEE
SLICE running on Gapfruit TEP via gRPC [40]. A more detailed diagram of
what it means to have customizable Trusted Execution Environments can be
seen in �gure 10. This example shows a multi-tenant situation where Domain
Orange belongs to one tenant, while Domain Green belongs to another. The
gRPC Server on the left is connected to a NIC session (Network Interface Card).
This way it can be reached over an external network from a TEE client, seen
in Figure 9. The gRPC Server contains complex third party code. Multiple
threads are running, multiple TCP connections and TLS sessions are handled,
as well as HTTP and Protobuf [41] is being parsed. The system is designed in
a way that the gRPC Server is outside of the TCB and can be restarted at any
time without having an impact on the health of the system. The integrity is
protected within the signed requests and the signed responses.
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Figure 10: Customizable Trusted Execution Environments

The gRPC Server forwards requests to the Security Monitor of the addressed
Domain. The Security Monitor has two main responsibilities: Enforcing access
control for TEE requests and providing attestation information to responses.
After verifying the client-signature, the Security Monitor forwards the request
to the TEE SLICE. The TEE SLICE loads the executable, calculates its hash,
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and executes it in the runtime given by the application type. The SLICE then
provides input from the request to the executable. After execution, the SLICE
creates a response containing the output from the executable and sends it to
the Security Monitor. Here, the response is enriched with information about
the system, such as the platform state in form of a Merkle tree, timestamp, and
secure counter value for non-repudiation. The response is then signed with an
attestation key and sent back to the TEE client via the gRPC Server.

TEE SLICE

Configuration
TEE Manager App Hash Hashing ROM

     TEE
Virtual File System

Application

File_systemRTC

Start/Stop

TEE Runtime
Application

stdoutstdin stderr

Request/Response

TEE

Application Runtime

Parent

Child

Figure 11: Trusted Execution Environment Internals

Figure 11 shows the internals of a TEE SLICE, in this example the Java
TEE shown in Figure 10. The TEE Manager receives requests and sends back
responses from and to the Security Monitor accordingly. The TEE Manager
controls the TEE Runtime and establishes communication channels to stdin,
stderr, and stdout of the application. The TEE Runtime is a parent component
that spawns the JVM. The Hashing ROM component loads the application
image from the �le-system, calculates its hash, and provides said hash value to
the TEE Manager. Accordingly, the TEE Manager includes said hash value into
the execution record of the respective application code. The Hashing ROM then
provides the application code as read-only memory to the JVM to execute. The
Hashing ROM and its relationship to the JVM are built in a way so that time-
of-check to time-of-use (TOC/TOU) attacks are prevented. After successful
execution, the execution record and the output on stdout as well as stderr are
then added to the response which is sent back to the Security Monitor. The
same mechanism can be applied to all runtimes [4.3] supported by Gapfruit
TEP.

5.1 Attestation

The chain of trust used in software attestation is rooted at a signing key owned
by the hardware manufacturer of an HSM, TPM [42], or any other form of a
secure element such as OpenTitan [43]. The architecture in Figure 10 shows
that only the Security Monitor has access to the HSM service. This is enforced
by the capability-based security of Gapfruit TEP. The platform makes sure that
only the Security Monitor of a speci�c domain has access to the key store of
the respective domain. Every gRPC response is signed with a domain-speci�c
attestation key. The certi�cate of the attestation key is signed by a device-
speci�c key, which in turn is signed with a root key of the device manufacturer.
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Since domain-speci�c keys are linked to device keys, any response that is
signed by the respective Security Monitor can be cryptographically linked to a
speci�c device via the certi�cate chain of the attestation key. A gRPC client
may request a quote from a domain. The quote can be used to provision a TEE.

The quote holds information about the environment such as:

� Certi�cate chains.

� Fingerprints of allowed client certi�cates.

� Information about the speci�c hardware.

� Timestamp.

� Secure monotonic counter.

� Environment settings.

� The Trusted Code Base (TCB) of the domain.

� etc.

The TCB of the domain holds a view of the complete trusted code base in
form of a Merkle tree [44]. The Merkle tree represents the TCB of the whole
subsystem of the device which is involved to execute code inside of a TEE
SLICE. It uni�es the TCB in terms of Resource Distribution, Service Topology,
and Software Dependencies as shown in Figure 5. While up to Stage 0 the
integrity of the system is veri�ed with the static root of trust measurement
(SRTM), the Merkle tree represents the dynamic root of trust (DRTM), which
in turn is linked to Stage 0.
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5.2 Real-World Example

Figure 12 shows a real-world scenario, similar to how it is deployed in a banking
environment. In this example a large business transaction needs to be autho-
rized. The architecture has several entities:

� Core Banking Infrastructure: This is where all the business logic of a bank
is computed.

� HSM : The Hardware Security Module that signs large transactions, interbank-
clearance, smart contracts, etc.

� Alice and Bob: Bank employees that need to approve certain transactions.

� TEE : Trusted Execution Environment as physical device with similar
properties against physical attacks as the HSM. Executes the TEE app
and attests the security properties of the device.

� TEE app: The application that decides if it approves the business trans-
action based on the same information provided to Alice and Bob. The
TEE app is developed by either the bank or a 3rd party, and is veri�ed
and deployed to the device by the Security O�cer.

� ExecuteRequest and ExecuteResponse: Protobuf messages de�ned in the
API [39].
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Core Banking Infrastructure

HSM

Business ApplicationTEE

Alice

Bob

SignedOutput result TCB ...

ExecuteResponse

input

ExecuteRequest

attestation
signature

Audit Trail

TEE app

I approve <Loan X> signature

I approve <Loan X> signature

TEE approves <Loan X> signature Large Loan X signature

#input

Alice

Bob

TEE app

Business-
Transaction

Details

Business-
Transaction

Details

Business-
Transaction

Details

Figure 12: Multi-Authorization Use-Case

The HSM appliance on the right has a multi-authorization feature that signs
a large business transaction, when three parties approve: Alice, Bob, and a TEE
application. For this, a security o�cer has to onboard each of the approver's
public key. On the left, there is an appliance shown that runs Gapfruit TEP
with the TEE functionality. During provisioning, an attestation key and an
output signing key is generated. Also, the TEE application is loaded. In this
case, the TEE application is a compliance �lter that goes through a series of
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checks that make sure the business transaction satis�es the bank's interests and
regulations. Details about the to-be-checked business transactions are part of
the input of the ExecuteRequest. The Business Application within the Core
Banking Infrastructure sends such an ExecuteRequest the TEE, which provides
the input to the TEE application, which in turn executes the compliance checks
over said input. If the checks pass, the TEE application writes the output which
then gets signed with the output signing key. This signed output is then sent
back as part of the ExecuteResponse. Exactly this signed output is then sent to
the HSM as the �nal approval for the business transaction. Additionally, the
ExecuteResponse is signed with the attestation key and then added to an audit
database so it can be veri�ed by internal or governmental regulatory agencies.
The ExecuteResponse attests that a certain output was generated from a speci�c
input, executed at a speci�c time with speci�c code.

6 Comparison with Other Platforms

The problems with monolithic operating systems stated in 2.1 have widely been
acknowledged [1, 45, 46]. This section describes platforms that address some
parts of the broad scope of what Gapfruit TEP solves fundamentally. They
can be grouped in Hypervisors, Microkernel Platforms, and Trusted Execution
Environments. Some of these solutions were developed because a trustworthy
system such as Gapfruit TEP did not exist.

6.1 Hypervisors

Hypervisors manage virtual machines (VM). In some products such as Wind
River Helix [47] these hypervisors support pinning speci�c CPU cores to certain
VMs. This enables one to create products where one VM holds a static real-
time operating system (RTOS) while the other VM runs a full-blown Linux
distribution. The problem with this approach is that now the manufacturer has
to maintain the hypervisor, the RTOS, and the Linux VM(s) individually, while
the maintenance e�ort of each of these subsystems is substantial. Even though
Gapfruit TEP supports virtualization as well, it is encouraged to run code in
one of the many supported runtimes (Section 4.3) and bene�t from the powerful
yet lightweight package manager (Section 4.5).
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Figure 13: Separation with virtualization
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6.2 Microkernel Platforms

Especially in safety-critical products, there are di�erent embedded microkernel
platforms on the market, such as QNX, Integrity, or VxWorks. Conceptionally,
these products are not that di�erent from each other as they all lack capability-
based security and update-ability. So in this comparison, the focus is on QNX
and CAmkES.

6.2.1 QNX

QNX [16] is a microkernel operating system without capability-based security.
That means that the dependencies are not formally de�ned and enforced as it is
done with Gapfruit TEP. The IPC policies are de�ned in the servers. There is
no package management system, so updates are done by distributing the whole
system image that includes applications, drivers, network-stacks, and the OS in
one binary.

6.2.2 CAmkES

CAmkES [24] is a software development and runtime framework for building
systems on the seL4 microkernel. It has a static service-oriented architecture
with capability-based security. While it provides rudimentary virtualization
support, it lacks any sort of package management system. The system is built
and distributed as a single static boot image. In contrast to Gapfruit TEP,
CAmkES-based systems are de�ned at design time and remain �xed at runtime.

6.3 Trusted Execution Environments

There are two popular Trusted Execution Environments currently in the mar-
ket: ARM TrustZone and Intel SGX. They have been developed because these
vendors acknowledged that current operating systems cannot be made secure
and in their threat model are considered compromised. These solutions have
been added to the CPU by hardware, microcode, or a combination of them.
These technologies can be combined with Gapfruit TEP, if the threat model of
a particular use-case calls for it. However, it must be noted that the features of
both these technologies are either impossible or hard to update.

6.3.1 ARM TrustZone

ARM TrustZone [48] provides two areas on the same processor: The secure
world and the normal world. The secure world is protected from the normal
world, even from code running in the kernel. The secure world also has access
to more parts of the SoC than code running in normal world. This means that
code, that runs in the secure world is even more critical than code running
in the kernel of the normal world. Hence, unlike Gapfruit TEP as described in
section 4, ARM TrustZone fails to prevent applications from having unrestricted
access to resources of the computing environment outside the trusted execution
environment. Additionally, ARM TrustZone has no mechanism to attest that
code running within the secure world was in fact executed on the particular
hardware as TEEs on Gapfruit TEP described in section 5.1.
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Figure 14: Separation with ARM TrustZone

6.3.2 Intel SGX

Intel SGX [49] is a TEE technology for Intel x86 CPUs that is entirely imple-
mented in microcode, except for the memory encryption engine [46]. The threat
model assumes that code running in kernel and in user mode is compromised.
Intel claims that SGX reduces the TCB of the critical code substantially. How-
ever, this is not quite true, since the complexity is being pushed to where it is
not �xable nor auditable.

While some concepts of Intel SGX are sound, the intuition behind SGX's
memory access protections can be built by considering what it would take to
implement the same protections in a trusted operating system or hypervisor,
solely by using the page tables that direct the CPU's address translation feature
[46], section 6.2.1. This is exactly what Gapfruit TEE SLICEs provide while
developing software that runs within a Gapfruit TEE is easy - unlike developing
software that runs within SGX.
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7 Business Bene�ts

With Gapfruit, businesses that build products for mixed critical use-cases can
create scalable and inherently secure solutions that provide high levels of return
on investment. These businesses now have the ability to prove the trustwor-
thiness through attestation, rather than just by claims. The secure platform
architecture allows developers to focus on innovation and new functionality,
rather than spending valuable resources on security issues. Di�erent devel-
opment teams can build and deploy only the code they really need without
interfering with each other.

� Provable trustworthiness.

� Auditable.

� Secure out of the box.

� Reduced time-to-market.

� Fast certi�cation.

� Risk-free maintenance of devices that are already in productive environ-
ments.

� Increased integrity by the secure update of parts of the system.

� Increased availability by the risk-free update of the system.

� Rapid deployments.

� Automated CVE Monitoring.

7.1 Business Bene�ts TEE

Gapfruit Trusted Execution Environments as described in section 5, o�er one
or a combination of the following bene�ts:

� Provide traceability for audits.

� Usage as a compliance �lter for decision making.

� Computation of con�dential data.

� Executing con�dential code.
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8 Conclusion

Rather than approaching today's security challenges e�ectively, enterprises ap-
ply all kinds of solutions to their infrastructure. If one technology is insu�cient,
keep adding more. This patchwork security does not only make us all less safe -
it proves the fact that the most fundamental technology that we build our IT on
is a big pile of sand: The operating system. As Biggs, Lee, and Heiser emphasize:

�The conclusion is inevitable: From the security point of view,
the monolithic OS design is �awed and a root cause of the majority
of compromises. It is time for the world to move to an OS appropri-
ate for 21st-century security requirements.� [1]

Today's and tomorrow's computing challenges are addressed by Gapfruit TEP,
a unique operating system designed for security. Its modern architecture elimi-
nates typical attack vectors and minimizes the impact of software �aws. Gapfruit
TEP enables mixed critical applications run side by side while guaranteeing
strong separation of concerns. Gapfruit provides several low-risk migration
paths enabling any unmodi�ed application to run in strongly isolated environ-
ments.

Gapfruit's architecture is future-proof and allows reliable and rapid rollout
of upgrades and new services. It is therefore suited for many di�erent use-
cases such as transportation, edge computing, secure endpoints, IoT gateways,
medical devices, automotive, industrial and building automation systems.

Product manufacturers can di�erentiate themselves with the provable trust-
worthiness capabilities provided by Gapfruit TEP.

About Gapfruit AG

Gapfruit AG is a deep-tech company based in Switzerland with a proven track
record in systems security, software engineering, and innovation. The founding
team developed a military-grade operating system ful�lling the requirements
set by national governments and security agencies across the world for ironclad
security. With this expertise, Gapfruit provides the Gapfruit Trustworthy Exe-
cution Platform for today's and future challenges. The developers at Gapfruit
have been contributing to the Genode Framework [12] for many years.

If you want to deliver trustworthy products yet focus on your core expertise,
get in contact with us today.

info@gapfruit.com
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