
Attested Trusted Execution Environments

for Transactional Workloads

Sid Hussmann

Gapfruit Technologies

Switzerland

July 13, 2021

Abstract

We present a generic TEE toolkit applicable for many use-cases in �-
nance, healthcare or government. Gapfruit TEE is built on very strong
security properties [1]. It embodies a microkernel operating system with
capability-based security. Each component of the system is strongly iso-
lated and has only access to the resources and services it really needs.
The trust graph of each component is concisely de�ned and veri�ed dur-
ing build, deployment and run time. Gapfruit TEE runs on ARM, x86
and RISC-V leveraging the hardware security properties these chips pro-
vide. Di�erent application runtimes and a simple API make it easy to
integrate Gapfruit TEE into existing IT and OT infrastructure.

1



1 Introduction

A hosted computing provider may guarantee a certain amount of liability, to
encourage users to run their software in the providers computing environment.
IT security threats and vulnerabilities are rising exponentially. By o�oading
sensitive workloads to trustworthy computing environments, users can counter
these threats. However, existing TEE technologies fail to address many rudi-
mentary requirements such as ease-of-use, isolation, attestation, management
and scalability.

This paper has two main, but distinct audiences: Product manufacturers
and system integrators.

� Product manufacturers, such as HSM vendors, use Gapfruit Trustworthy
Execution Platform (TEP) [1] to build secure products, like TEE appli-
ances [2].

� System integrators integrate such TEE appliances into their infrastructure
using the TEE API [5]. The integration of Gapfruit TEEs is similar to the
ease-of-use of server-less computing, combined with attestable security.

The expression Trusted Execution Environment (TEE) is quite ambiguous. The
term is used in di�erent sub-domains in the computing ecosystem. Though,
there is one common characteristic: The main goal is to protect trusted code and
data during runtime. Most TEEs on the market distinguish between trusted and
untrusted code, whereas the trusted code generally has more access to the overall
system. However, in practice, it is not so straight forward to divide applications
into strictly separate groups, trusted or untrusted, good or malicious.

This is where Gapfruit TEE shines. The capability-based architecture of
Gapfruit allows us to govern the trust relationship of each sub-system down to
the hardware. Combined with strong isolation and attestation, this technology
forms the basis of truly trustworthy computing.

For device and appliance manufacturers, the Gapfruit TEE system can be
customized and integrated in their products. For IT or OT system architects,
products running Gapfruit TEE, are easily accessible from their infrastructure,
with an open and simple API [5]. Existing applications run inside a Gapfruit
TEE without or with minimal modi�cations.

This white-paper describes the high-level concepts of the Gapfruit Trusted
Execution Environment. An in-depth discussion about the core technology can
be found in the technical white-paper [1].

2



2 Vision

While some early design decisions of Unix led to the insecurity of today's op-
erating systems [1], one thing is quite beautiful: The simplicity of the interface
between processes. The term �do one thing and do it right� combined with the
simplicity of chaining things together, is one of the reasons why Unix/Linux is
so popular. Figure 1 shows how you interact with an application on Unix. After
spawning the process, you send input to stdin and listen to output of stdout.
Any side information about the computing that helps to analyze what's going
on are being written to stderr. When the computation is done, the process sends
an exit code that indicates success or a speci�c error, while the number Zero
meaning success.

stderr
exit_code

stdout
appstdin

Figure 1: The Simplicity of Unix Processes

What if we could have all the bene�ts of this simplicity, combined with at-
tested strong security guarantees? The application developer would not need
to deal with any form of attestation. They would develop and build the appli-
cation on their favorite operating system. Run it. Test it. If it works deploy
it to a Trusted Execution Environment (TEE) 2. The application would not
even know it runs within a TEE. Even the people who use these protected
applications would not need to fully understand all the concepts around TEEs.

signed_request

tee_tcb_info ...

execute_response

input_hash

TEE

client_signatureexecute_request

execution_id input

signed_response

output output_signature

result

result_code result_text

attestation_signature

exit_code

exit_code
stdout

stderr
appstdin

merkle_tree

signed_output

Figure 2: The Simplicity of Unix Processes in TEEs

The concept of Gapfruit TEE has similarities with concepts of Serverless
Computing and Functional Programming. The relation to Serverless Comput-

ing lies in the fact that you don't have to deal with any operating systems,
virtual machines, or container runtimes. You just build, deploy, and run your
application. The Gapfruit TEE provides con�dence in the absence of func-
tional impurity, while the full transitive closure of the Trusted Computing Base
(TCB) is measured. In this regard, it is related to some ideas of Functional
Programming. Gapfruit TEEs go way beyond that. The technology combines
this simplicity with the strong security guarantees described in the following
section.

3



3 Technology

The Gapfruit Trusted Execution Environment technology is built on top of a
microkernel operating system with capability-based security [14]. The Trusted
Computing Base (TCB) is extremely small and can be veri�ed during build,
deployment and run time.

From our experience in �nance and government, Trusted Execution Environ-

ments should provide at least the following properties:

� Physically and logically secure the execution of the application code from
any interference and leakage (Isolation Property).

� Attest to a veri�er the runtime integrity of an application, including the
whole TCB.

� Creating an immutable record of the execution of the application code,
detailing input, output, time, and device state (Audit Property).

� Restrict access to start an execution to authorized entities (Authorization
Property).

This entails having a mechanism to securely load code, protect code from alter-
ation, and extend to protecting the processed data and its output. A Gapfruit
TEE can prove that a certain output was generated from a speci�c input, ex-
ecuted at a particular time with speci�c code. So it works like a notary that
proves its trustworthiness through attestation.

The building blocks in a Gapfruit system are called SLICEs. A SLICE is
a Secure and Light Instance of Contained Enclave which has strong isolation
guarantees so that application and data are protected at runtime. Furthermore,
potentially malicious code is contained from breaking out. An analogy would
be the objectives of enclaves combined with what virtual machines or sandboxes
try to achieve (Figure 3). So the isolation of SLICEs is guaranteed from outside-
in as well as from inside-out. This is important, as it is not always clear what
stakeholder considers which component of a system as trustworthy.

Each SLICE only receives access to the resources and services it really needs.
The desired state of the SLICE topology is de�ned in a nested con�guration
mechanism, which forms a mandatory access control system [6].

Enclave Sandbox / VM

SLICE

Figure 3: The isolation of a SLICE in contrast to enclaves and sandboxes

Apart from the strong isolation, another core concept of Gapfruit is how
dependencies are governed.

The �rst type of dependency is Resource Distribution. A child component
depends on its parent. Each dependee is designed as simple as possible, so it can

4



be veri�ed for correctness. At the root of this dependency tree lies the micro-
kernel. A parent component provides its children with resources and establishes
service connections to other components.

These connections form the second type of dependency: Service Topology.
SLICEs are connected with each other via a service-oriented architecture where
a client depends on a server providing a service.

The third type of dependency controls the supply chain of Software De-

pendencies. Where a SLICE depends on binaries, libraries, or other artifacts
that are part of distributable packages. Figure 4 shows these three types of
dependencies in three views of the same system.

stage_2

stage_1

stage_0

lib_xbin_a

tep

platform slice_runtime

slice_1

slice_2 slice_3

slice_4

platform

slice_1 slice_2 slice_3

slice_4

tep

slice_1

pkg_a

bin_b

slice_2 slice_3

pkg_b

slice_4

lib_z bin_c

Parent-Child Relationship Service Oriented Architecture Lightweight Package Management

Resource Distribution Service Topology Software Dependencies

Figure 4: Topologies of dependencies

3.1 Attested Transactional Computation

With these two core concepts, strong isolation and control over dependencies,
we create the TEE scenario.

Figure 5 shows a high-level overview where a TEE client connects to a
Gapfruit TEE appliance via gRPC [7]. This TEE client sends requests and
receives responses. If the request is of type ExecuteRequest, the application
within the TEE gets executed.

TEE Hardware

Gapfruit TEP

gRPC Request

TEE SLICE

App

Key Store

gRPC Response

Less-trusted Infrastructure

gRPC
Server

Figure 5: Remote trusted execution

An internal view of the Trusted Execution Environment appliance in form
of Service Topology can be seen in �gure 6. The gRPC Server on the left
is connected to a NIC session (Network Interface Card). This way it can be
reached over an external network from a TEE client, seen in Figure 5. The gRPC
Server contains complex third party code [7]. Multiple threads are running,
multiple TCP connections and TLS sessions are handled, as well as HTTP and
Protobuf [8] is being parsed. The system is designed in a way that the gRPC
Server is outside of the TCB and can be restarted at any time without having

5



an impact on the health of the system. The integrity is protected within the
signed requests and the signed responses.

gRPC Server

platform

N
IC

RT
C

H
SM

Fi
le
_s
ys
te
m

TEE Security Monitor

TEE TEE

TEE SLICE

Figure 6: Customizable Trusted Execution Environments

The gRPC Server forwards requests to the Security Monitor. The Security
Monitor has two main responsibilities: Enforcing access control for TEE re-
quests and providing attestation information to responses. After verifying the
client-signature, the Security Monitor forwards the request to the TEE SLICE.
The TEE SLICE loads the executable, calculates its hash, and executes it in the
runtime given by the application type. The TEE SLICE then provides input
from the request to the executable. After execution, the TEE SLICE creates a
response containing the output from the executable and sends it to the Security
Monitor. Here, the response is enriched with information about the system,
such as the platform state in form of a Merkle tree [11], the current timestamp,
and secure counter value for non-repudiation. The response is then signed with
an attestation key and sent back to the TEE client via the gRPC Server.

TEE SLICE

Configuration
TEE Manager App Hash Hashing ROM

     TEE
Virtual File System

Application

File_systemRTC

Start/Stop

TEE Runtime
Application

stdoutstdin stderr

Request/Response

TEE

Application Runtime

Parent

Child

Figure 7: Trusted Execution Environment Internals

Figure 7 shows the internals of a TEE SLICE, introduced in Figure 6. The
TEE Manager component receives requests and sends back responses from and
to the Security Monitor accordingly. The TEE Manager controls the TEE Run-

time and establishes communication channels to the application's stdin, stderr,
and stdout. The TEE Runtime is a parent component that spawns the Appli-
cation Runtime, e.g., a full JVM [3] or WebAssembly runtime [4]. The Hashing
ROM component loads the application image from the �le-system, calculates
its hash, and provides said hash value to the TEE Manager. Accordingly, the
TEE Manager includes said hash value into the execution record of the respec-
tive application code. The Hashing ROM then provides the application code as
read-only memory to the Application Runtime to execute. The Hashing ROM
and its relationship to the Application Runtime are built in a way so that time-
of-check to time-of-use (TOC/TOU) attacks are prevented. After successful

6



execution, the execution record and the output on stdout as well as stderr are
added to the response, which is sent back to the Security Monitor.

3.2 Attestation

The chain of trust used in software attestation is rooted at a signing key owned
by the hardware manufacturer of an HSM, TPM [9], or any other form of a
secure element such as OpenTitan [10]. The architecture in Figure 6 shows that
only the Security Monitor has access to the HSM service. This is enforced by
the capability-based security of Gapfruit TEP. The platform makes sure that
only the Security Monitor of a speci�c domain has access to the key store of
the respective domain. Every gRPC response is signed with a domain-speci�c
attestation key. The certi�cate of the attestation key is signed by a device-
speci�c key, which in turn is signed with a root key of the device manufacturer.

Since domain-speci�c keys are linked to device keys, any response that is
signed by the respective Security Monitor can be cryptographically linked to a
speci�c device via the certi�cate chain of the attestation key. A gRPC client
may request a quote from a domain. The quote can be used to provision a TEE.

The quote holds a view of the complete Trusted Computing Base in form of a
Merkle tree [11]. The Merkle tree represents the TCB of the whole subsystem of
the device which is involved to execute code inside of a TEE SLICE. It uni�es
the TCB in terms of Resource Distribution, Service Topology, and Software

Dependencies as shown in Figure 4. It provides con�dence in the absence of
functional impurity. While up to Stage 0 the integrity of the system is enforced
with the static root of trust measurement (SRTM), the Merkle tree represents
the dynamic root of trust (DRTM), which in turn is linked to Stage 0. The full
expansion of state of the TEE is measured and part of the Merkle tree.

3.3 Customizable TEEs

Section 3.1 described how a minimal TEE system can be designed. Figure 8
shows a simple system combining three SLICEs: A gRPC Server, a Security

Monitor and a TEE SLICE. This may su�ce for certain use-cases. Due to the
nature of the Gapfruit TEE framework, we are a lot more �exible. A more
detailed diagram of what it means to have customizable Trusted Execution En-

vironments can be seen in �gure 8. This example shows a multi-tenant situation
where Domain Orange belongs to one tenant, while Domain Green belongs to
another. Also, several instances of TEE SLICE s can be deployed within each
domain, so TEE applications can run in parallel.

7



Domain Orange  

Domain Green  

gRPC Server

platform

N
IC

RT
C

H
SM

Fi
le

_s
ys

te
m

TEE Security Monitor

TEE

TEE Security Monitor

TEE TEE

TEE

Java TEE

WASM TEE

Figure 8: Customizable Trusted Execution Environments

In another scenario, Gapfruit TEE runs within the Secure World of ARM
Trustzone [13]. In this case the gRPC Server would be replaced with a compo-
nent that receives API calls from the Normal World. Since Gapfruit supports
virtualization, the same mechanism can be applied to access the TEE API from
within virtual machines.

4 Use-Cases

We deployed Gapfruit TEEs successfully on Securosys hardware [2] with the
same protection against physical attacks as their HSMs. The use-cases described
in this section originate from real-world scenarios in the �nance sector.

4.1 Compliance Veri�cation

Many areas in our life are automated. Especially the banking sector was one
of the early adopters of IT automation. The things that currently aren't auto-
mated are typically things human individuals have to vouch for. Meet Alice,
an enthusiastic, highly paid banking professional. In this simple example she
is the one who has to approve a business transaction. She has to go through
a compliance checklist, answering questions regarding the business transaction
details: Is the amount within the threshold? Is the money going to a sanctioned
company or country? In case of Bitcoin (BTC), is the current exchange rate
within bounds? Does the Know-Your-Customer (KYC) report comply? Is the
BTC address white- or blacklisted? After �lling out the compliance checklist,
she signs that piece of paper with a pen and adds it to the stack of compliance
reports, which forms the audit trail. After verifying that the business transac-
tion meets the compliance requirements, she authenticates herself to the HSM
and approves the transaction with her private key. The HSM then signs the
business transaction with its internal private key.

8



HSM

Alice

I approve <Loan X> signature

Large Loan X signature

Compliance
Checklist

Business-
Transaction

Details

Audit Trail

Figure 9: Manual Compliance Veri�cation

Now what is stopping us from automating this process using conventional
banking infrastructure?

Today's general-purpose operating systems such as Windows, Linux, *BSD
or OSX have millions of lines of code (LOC). Linux currently counts 32M LOC
and the Windows kernel is estimated to consist of 65M LOC [1]. All of which
evolved over decades and their initial focus was on usability, performance, and
portability. Di�erent security mechanisms were considered after the architecture
was set in stone. There is no way to guarantee the integrity of the system. Thus,
there is no way to cryptographically prove that all the important aspects of a
business transaction were considered.

TEE

  TEE app

Audit Trail

Business-
Transaction

Details

TEE app

input

ExecuteRequest

SignedOutput result TCB ...

ExecuteResponse attestation
signature#input

Business Application

input

output

Compliance
Checklist

output

Large Loan X
output

signature

Figure 10: Automated Compliance Veri�cation

With Gapfruit TEE, automation of this critical part of banking becomes
possible. Figure 10 shows how such an infrastructure looks like. The Business
Application (E.g. the core banking system), creates an ExecuteRequest with
an input that contains the business transaction details. This request is then
sent to the TEE appliance. The compliance checklist and the code that veri�es
if the business transaction details meet the compliance requirements, are part
of the TEE app. The TEE app returns its decision as part of the output and
result. The TEE appliance then cryptographically signs the output as part
of the SignedOutput and creates an ExecuteResponse, which is signed with an
attestation key. This approach with the two signatures has two main bene�ts.

9



For one, the SignedOutput can be directly used as signed transaction, just like
it would have come from a HSM (see Figure 9). For the other, the signed
ExecuteResponse proves that the output was generated from a speci�c input,
executed at a particular time with speci�c code. This proof is added to a
database as part of the audit trail.

4.2 Approval Framework

The example above illustrates how the Gapfruit TEE can be used to automate
compliance veri�cation.

For extra security of even higher business transactions, Figure 11 shows a
real-world scenario, similar to how it is deployed in a banking environment. In
this example a large business transaction needs to be authorized. The architec-
ture has several entities:

� Core Banking Infrastructure: This is where all the business logic of a bank
is computed.

� HSM : The Hardware Security Module that signs large transactions, interbank-
clearance, smart contracts, etc.

� Alice and Bob: Bank employees that need to approve certain transactions.

� TEE : Trusted Execution Environment as physical device with the same
protection against physical attacks as the HSM. Executes the TEE app

and attests the security properties of the device.

� TEE app: The application that decides about the approval of the business
transaction based on the same information provided to Alice and Bob. The
TEE app is developed by either the bank or a 3rd party, and is veri�ed
and deployed to the device by the Security O�cer.

� ExecuteRequest and ExecuteResponse: Protobuf messages de�ned in the
API [5].

Approvals

Core Banking Infrastructure

HSM

Business ApplicationTEE

Alice

Bob

SignedOutput result TCB ...

ExecuteResponse

input

ExecuteRequest

attestation
signature

Audit Trail

TEE app

I approve <Loan X> signature

I approve <Loan X> signature

TEE approves <Loan X> signature Large Loan X signature

#input

Alice

Bob

TEE app

Business-
Transaction

Details

Business-
Transaction

Details

Business-
Transaction

Details

Figure 11: Multi-Authorization Use-Case

10



The HSM appliance on the right has a multi-authorization feature [12] that
signs a large business transaction, when three parties approve: Alice, Bob, and
a TEE application. For this, a security o�cer has to onboard each of the ap-
prover's public key to the HSM. On the left, there is an appliance shown that
runs Gapfruit TEP with the TEE functionality. During provisioning, an attes-

tation key and an output signing key is generated. Also, the TEE application is
loaded. In this case, the TEE application is a compliance �lter that goes through
a series of checks that make sure the business transaction satis�es the bank's
interests and regulations. Details about the to-be-checked business transactions
are part of the input of the ExecuteRequest. The Business Application within
the Core Banking Infrastructure sends such an ExecuteRequest the TEE, which
provides the input to the TEE application, which in turn executes the compli-
ance checks over said input. If the checks pass, the TEE application writes the
output which then gets signed with the output signing key. This signed output
is then sent back as part of the ExecuteResponse. Exactly this signed output is
then sent to the HSM as the �nal approval for the business transaction. Addi-
tionally, the ExecuteResponse is signed with the attestation key and then added
to an audit database so it can be veri�ed by internal or governmental regula-
tory agencies. The ExecuteResponse attests that a certain output was generated
from a speci�c input, executed at a speci�c time with speci�c code.

4.3 Con�dential Computing

Gapfruit TEE allows companies to collaborate without exposing their private
data to each other, such as bank account details, to determine and detect money
laundering patterns. A machine learning model would be deployed to the TEE,
while the data sent from the di�erent banks are encrypted with the public key,
whose private key is only accessible from within the TEE. This helps banks
operate better in terms of money laundering challenges in their KYC processes
and reduces false positives without exposing con�dential data to the competing
banks.

TEETEE app

Alice

Bob

Carla

input

EncryptedExecuteRequest

SignedOutput result TCB ...

ExecuteResponse attestation
signature#input

Figure 12: Con�dential Computing

There are countless numbers of use-cases involved in con�dential computing:

� Median Interest Rate

� DNA Risk Group

11



� Credit Quali�cations

� Loan Ful�llment

� Market-rate Calculations

� Privacy-preserving Analytics

Outsourcing all kinds of data processing to external cloud infrastructures has
become best practice. Still, a lot of companies don't trust cloud providers with
their data. With the con�dential computing properties of Gapfruit TEE, you
can design a system, where most of your infrastructure runs within the cloud,
while having control over the most sensitive data on prem, running within a
TEE - never expose any con�dential data to the cloud provider.

4.4 Database Transaction Validation

In cases where distributed blockchains are too slow, Gapfruit TEE may be
used to execute call-backs during a database transactions, which would lead to
veri�able, integrity protected database entries.

12



About Gapfruit AG

Gapfruit is a deep-tech company based in Switzerland with a proven track record
in systems security, software engineering, and innovation. The founding team
developed a military-grade operating system ful�lling the requirements set by
national governments and security agencies across the world for ironclad se-
curity. With this expertise, Gapfruit brings scienti�cally recognized academic
research to real-world products for today's and future challenges. The develop-
ers at Gapfruit have been contributing to the Genode Framework [14] for many
years.

If you want to deliver trustworthy products yet focus on your core expertise,
get in contact with us today.

info@gapfruit.com

13



Abbreviations

Meaning

AML Anti Money Laundering
API Application Programming Interface
App Application
BTC Bitcoin
DRTM Dynamic Root of Trust Measurement
gRPC Google Remote Procedure Call
HSM Hardware Security Module
IT Information Technology
JVM Java Virtual Machine
KYC Know Your Customer
LOC Lines of Code
NIC Network Interface Card
OT Operational Technology
ROM Read-only Memory
SLICE Secure and Light Instance of Contained Enclave
SRTM Static Root of Trust Measurement
stderr Standard Error Interface of Unix Processes
stdin Standard In Interface of Unix Processes
stdout Standard Out Interface of Unix Processes
TCB Trusted Computing Base
TEE Trusted Execution Environment
TEE app Application that runs within the TEE
TEP Gapfruit Trustworthy Execution Platform
TLS Transport Layer Security
TOC Time of Check
TOU Time of Use
TPM Trusted Platform Module
WASM WebAssembly

14



References

[1] Sid Hussmann, Gapfruit TEP, Technical Whitepaper
https://www.gapfruit.com/technology

[2] Securosys Imunes
https://www.securosys.com/securosys-trusted-execution-environment-tee

[3] JVM Languages
https://en.wikipedia.org/wiki/List_of_JVM_languages

[4] Wasm
https://webassembly.org/

[5] Gapfruit TEE API
https://docs.gapfruit.com/api/tee_api.html

[6] Mandatory Access Control
https://en.wikipedia.org/wiki/Mandatory_access_control

[7] gRPC, a high performance, open-source universal RPC framework
https://github.com/grpc/grpc

[8] Protocol Bu�ers
https://developers.google.com/protocol-buffers/

[9] Trusted Platform Module
https://trustedcomputinggroup.org/resource/

tpm-library-specification/

[10] OpenTitan
https://opentitan.org/

[11] Merkle Tree
https://en.wikipedia.org/wiki/Merkle_tree

[12] Securosys, Transaction Security Broker
https://www.securosys.com/securosys-transaction-security-broker

[13] ARM TrustZone
https://developer.arm.com/ip-products/security-ip/trustzone

[14] Genode Framework
https://www.genode.org

[15] Jiewen Yao, Vincent Zimmer, Building Secure Firmware
https://link.springer.com/book/10.1007%2F978-1-4842-6106-4

15

https://www.gapfruit.com/technology
https://www.securosys.com/securosys-trusted-execution-environment-tee
https://en.wikipedia.org/wiki/List_of_JVM_languages
https://webassembly.org/
https://docs.gapfruit.com/api/tee_api.html
https://en.wikipedia.org/wiki/Mandatory_access_control
https://github.com/grpc/grpc
https://developers.google.com/protocol-buffers/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://opentitan.org/
https://en.wikipedia.org/wiki/Merkle_tree
https://www.securosys.com/securosys-transaction-security-broker
https://developer.arm.com/ip-products/security-ip/trustzone
https://www.genode.org
https://link.springer.com/book/10.1007%2F978-1-4842-6106-4


Appendix

Threat Model

This section describes the threat model of TEE appliances built with Gapfruit
TEP, such as [2]. The thread model is derived from the STRIDE model de-
scribed in [15]. Mitigations for hardware-based attacks are important to get
right. That's why we work closely together with hardware manufacturers such
as HSM vendors. Since every hardware manufacturer has di�erent techniques,
we consider hardware-based attacks out of scope for this analysis.

16



Table 1: Threat for Asset - TEE Appliance
Threat Example

Spoo�ng
s-1: The attacker may receive a legitimate request and
execute it on a di�erent device than the TEE
appliance.

Tampering

t-1: The attacker may change settings of the TEE
appliance.

t-2: The attacker may change the TEE application or
data during an execution.

t-3: The attacker may load malicious code as TEE
application to the TEE.

t-4: The attacker may change parts of an
ExecuteRequest.

t-5: The attacker may change parts of an
ExecuteResponse or QuoteResponse.

Repudiation r-1: The attacker may try to change parts of an entry
of the audit-trail.

r-2: The attacker may delete an entry of the
audit-trail.

r-3: The attacker may prevent adding an entry to the
audit-trail.

Information
disclosure

i-1: The attacker may intercept gRPC network tra�c.

i-2: The attacker may try to access data of another
TEE application from their TEE application.

i-3: In an multi-party computation use-case, the
attacker may try to access the input of another party.

Denial of service d-1: The attacker may �ood the gRPC server.

d-2: The attacker may utilize a lot of resources within
the TEE application such as RAM and/or CPU.

Elevation of
privilege e-1: If the attacker gains access to credentials to the

Security O�cer role, they can change settings and the
TEE application.

e-2: If the attacker gains access to credentials of the
client, they can start executing a TEE application.

17



Table 2: Adversary for Asset - TEE Appliance
Adversary Example

Network attacker n-1: The attacker may connect to the system by
network in order to eavesdrop, intercept, or modify the
network packets.

n-2: The attacker may connect to the system by
network in order to exploit a vulnerability in the
network stack or gRPC server.

n-3: The attacker may connect to the system and send
unauthorized ExecuteRequest.

Unprivileged
software attacker u-1: The attacker may hide malicious code within a

TEE application that tries to escape the isolation and
attack the platform or TEE applications from other
security domains.

u-2: The attacker may send input as part of an
ExecuteRequest that triggers a vulnerability within the
TEE application.

Privileged admin
attacker p-1: The attacker may try to load a TEE application

into their security domain that tries to escape the
isolation and attack the platform or TEE applications
from other security domains.

18



Table 3: Mitigation for Asset - TEE Appliance
Mitigation Example

Protection

t-2 Only authorized users are allowed to change the
TEE application or data.
t-2 Any change of the TCB during an ongoing
execution will cancel the operation and return an error.
t-4 Every SignedRequest that holds the ExecuteRequest
is signed with a client key. Any change of parts of the
request would invalidate the signature and the request
will be dropped.
i-1 Every gRPC session is protected with TLS.
i-2 The virtual �le-system that is provided to the TEE
application is completely isolated from the rest of the
system using capability-based security.
i-3 Every input of an EncryptedExecuteRequest is
encrypted with a public-key, whose private-key is only
accessible within the physical device.
d-2 Every TEE application has clearly enforced
resource boundaries, which when exhausted would
terminate an execution and return an error.
n-1 Every gRPC session is protected with TLS and
every gRPC message is signed.
n-2 Since the network stack is outside of the kernel and
only part of the isolated gRPC server, any exploit on
the stack will only have an e�ect on the availability of
the gRPC server. An exploit on the gRPC stack won't
a�ect the integrity of any gRPC messages.
n-3 Every authorized client certi�cate is speci�cally
white-listed. Any SignedRequest with a certi�cate that
isn't part of the allowed-clients list, gets dropped.
u-1, p-1 Every TEE application is strongly isolated
and the access to resources are governed by
capability-based security.
u-2 The attack would only a�ect their own TEE
application due to the strong isolation and
capability-based security.

19



Table 4: Mitigation for Asset - TEE Appliance
Mitigation Example

Detection

s-1 Every SignedResponse is signed with an
device-unique attestation key which is only accessible
within the physical device.
t-1 Any ExecuteResponse and QuoteResponse holds
the full transitive closure of the TCB in form of Merkle
tree.
t-5 Every SignedResponse that holds the
ExecuteResponse or QuoteResponse is signed with the
attestation key. Any change of parts of the response
would invalidate the signature.
r-1 Every SignedResponse that may be used for the
audit-trail, is signed the attestation key. Any change of
parts of the response would invalidate the signature.
r-2 If the optional secure monotonic counter is enabled,
an auditor would notice a missing entry in the
audit-trail.
r-3 If the optional secure monotonic counter is enabled,
an auditor would notice a missing entry in the
audit-trail.
d-1 Every SLICE of Gapfruit TEE is monitored for its
health.
e-1 Any ExecuteResponse and QuoteResponse holds
the full transitive closure of the TCB in form of Merkle
tree. An auditor can detect when the TCB has
changed, and which speci�c part of the system. Also,
any action on the system is logged.

Recovery
d-1 The gRPC server SLICE is designed in a way that
it does not provide any services so it can be restarted
when it becomes unresponsive without having impact
on the rest of the system.
e-1 The credentials for changing the con�guration and
the TEE application can be updated at any time. Or
the device can be reset.
e-2 The list of allowed client certi�cates can be
updated at any time.

20


	Introduction
	Vision
	Technology 
	Attested Transactional Computation
	Attestation
	Customizable TEEs

	Use-Cases
	Compliance Verification
	Approval Framework
	Confidential Computing
	Database Transaction Validation


